Sequence to Sequence
Japanese Neural Lemmatisation:

doweneedsegmentation?

B117474
Word Count: 9964

Master of Science
Speech and Language Processing
School of Philosophy, Psychology and Language Sciences
University of Edinburgh
2018

Abstract

Pipeline models and joint end-to-end models are two contrasting models in morpho-
logical analysis. The biggest difference comes from the independence assumption
of the steps or modules, which is by default in pipeline models but not true in joint
end-to-end models. In this dissertation, we construct these two types of models for
segmentation and lemmatisation, two important tasks in Japanese morphological anal-
ysis. By making use of Nematus, a sequence-to-sequence neural network framework
with an encoder-decoder architecture, we model the two tasks as sequence-to-sequence
mapping problems. By comparing the best pipeline analyser and the joint end-to-end
analyser, we come to the conclusion that, although the pipeline analyser outperforms
the joint analyser by a little bit, as it is time-consuming to separately optimise segmen-
tation and lemmatisation, and joint learning of both does not worsen the performance
a lot, we would still prefer the joint analyser. Only if there is enough data for either

task to learn would we appreciate the pipeline idea.

Keywords: sequence to sequence, joint end-to-end, segmentation, Japanese morpho-

logical analysis, Nematus/Lematus

Acknowledgements

I would like to express my sincere gratitude to A (who) A (why):

A (my supervisor, Prof. Sharon Goldwater) A (patient and inspiring during every
weekly group meeting session and individual supervision)

A (my group members) A (kind help and useful feedback)

A (TAs, Sameer Bansal and Clara Vania) A (solid support all the time)

A (MSc Speech and Language Processing, Prof. Simon King) A (funding for pur-
chasing the data; organising such as an amazing programme)

A (Arseny Tolmachev from Kyoto University) A (insightful perspectives on Japanese
morphological analysis)

A (my parents) A (sending me abroad)

A (friends) A (patient enough to bear with me bitching about stress)

A (open-source community; Nematus, Lematus, etc.) A (without which I could not

have been able to finish such a dissertation)

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(B117474
Word Count: 9964)

Table of Contents

[2.1 Japanese morphological analysis|
[2.2 Sequence to sequence neural networks with attention|
[2.3 Sequence to sequence morphological analysis|

Experimental Design|

Bl Dad . . - o o o oo
[3.1.1 Corpora and pre-processing|
B.1.2 Statisticsl
3.13 Basicumitsl

3.2 Modelsl
B.2.1 Temmatisationmodels|
[3.2.2 Segmentation models|. o0,

[3.2.3 Segmatisation models: segmentation & lemmatisation models|

: TAINING] v e e e e e e e e e e e e

I Frameworkl

[3.3.2 Hyper-parameters|.

B4 Evaluationl.
[3.4.1 Accuracy: token-levell 00000,

4.2 Fl score: sentence-level|

Vii

B EHEE

BN 8 O @

1 Th lemmatiser]

4.2 Segmentisers| . .

4.2.1 sent2sent segmentisers|

4.2.2 Thebestsegmentiser]

4.3 Segmatisers| . . .

4.3.1 Baseline segmatisers|

4.3.2 Pipeline segmatisers|

4.3.3 sent2sent segmatisers|

4.3.4 The better segmatiser|

A Extra examples|

[A.1 Anexample of Japanese sentence|.

|A.2 Inconsistency of [PAdic and Jumandic in Section}4.2.1]

|A.3 'The superiority of JUMAN++ over JUMAN|

[B_Plots|

[B.1 Attention maps for Section4.1.1}

[C Hyper-parameter tuning|

|(C.1 Hyper-parameters|

viii

39
40
40
40
40

List of Figures

A1

The word2word lemmatisers: Accuracy on UD _Japanese test set| . . . [20

B.1

Attention map for an incorrectly lemmtised example L -> 3 % by |

chard 51

IB.2

Attention map for a correctly lemmtised example L -> 3% by char30)|

List of Tables

2.1 An example of the input and output for model 5-Char in Lematus| . . 3|
[3.1 Three categories of ambiguous words in UD _Japanese training set/ . . [12
[3.2 Percentage of ambiguous words in UD _Japanese and expected accu- |
racy of model base-copying| 12|

[3.37 Examples of byte pairs learned from UD Japanese training seff [14]
[3.4 The complete list of our models: Lemmatisers, segmentiser, and seg- |
mMatiSersl 1.5]

[3.5 Special symbols for formatting input and reference outputf. 16]
[3.6 The encoder and decoder lexicon size and the lexicon overlap of the |
[contextmodels| 17
3.7 Actual Tength of context being encoded in word2word models| [
3.8 Joutput]:|input|: Length statistics of UD Japanese training set| . . [19]
[3.9 Examples of input and output for the sent2sent segmatisers|. 20

[3.10 Baseline models: three existing non-neural (or not completely neural) |

Japanese morphological analysers and their dictionaries|. 21
[3.11 Example of computing constrained F1 score for segmentation|. 23l
4.1 Encoder lexicon statistics of word2word char and bpe lemmatisers| . 23
4.2 An example of different models lemmatising an unseen character by |

outputting different least frequent characters| 27

4.3 The sent2sent lemmatisers: F1 score on UD _Japanese test set and en- |
rlexicon statisticsl 28]

4.4 Test sentences with mismatched length in the sent2sent-char lemmatiser]
4.5 Test sentences with mismatched length in the sent2sent-bpe lemmatiser|
4.6 F1 scores of the baselines and sent2sent segmentisers|. 31
4.7 Length mismatch error rate and mismatch unit count for sent2sent seg- |

[mentisers|

Xi

Xii

4.8 Segmatisation F1 scores of baseline segmatisers| 33|
4.9 The sent2sent segmatisers: F1 score on UD _Japanese test set and en- [
[coderlexiconstatistics]
“4.10 Length mismatch error rate and mismatch unit count for sent2sent seg- |
MALISErS| o e e e e e e e e e 35

.11 FI score of the pipeline segmatiser vs. the joint segmatiser] 36!
IA.1 Anexample of Japanese sentence containing kanji, hiragana, katakana, [
and alphanum| 47

|A.2 Examples of inconsistency in segmentation and lemmatisation between [
IPAdic and Jumandic (seg: segmentation; lem: lemmatisation).| 48]

[A.3 JUMAN vs. JUMAN++: Segmentation of ambiguous cases.| 49
(C.1 Hyperparameters for the lemmatisers|. 53]
|C.2 Hyperparameters for the segmentisers| 54
|C.3 Hyperparameters for the joint segmatisers| 53]

Chapter 1

Introduction

1.1 Motivation

Doweneedsegmentation?

For English, the answer is not, as sentences in English naturally come with space
as word boundary delimiters. We do not write English sentences in this way: Natu-
ralLanguageProcessingisinteresting. But for some languages such as Japanese, where
word boundaries are not indicated, the answer is different. The same sentence would
look like:

HIRS B D T

The correspondence between the words in the English and the Japanese sentence
is:

HA Sif yUsE he ISR T .

natural language processing (subject case) interesting is

Regarding segmentation, languages in the world can be roughly categorised into
those that are segmented and those that are non-segmented. For different types of lan-
guages, the ways that computers process them vary. A related task in Natural Language
Processing (NLP) is morphological analysis. It represents a series of approaches of
processing natural language data by computers. Generally, it includes Part-of-Speech
(POS) tagging, lemmatisation, etc. But for some specific languages, there includes
more. For non-segmented languages, segmentation is viewed as the first step. Segmen-
tation is to split a chunk of text into words. Following segmentation, lemmatisation is
indispensable for languages with inflectional morphology. It returns the canonical or

dictionary form of a word. Morphological analysis is important in downstream NLP

1

2 Chapter 1. Introduction

tasks such as Machine Translation (MT) (Fraser et al., 2012}, Information Retrieval
(IR), etc. For instance, in web search, lemmatisation and related morphological pro-
cesses can analyse and return the morphological variants of the words in users’ queries,

which enlarges the search scope, thereby finding more related web pages.

Japanese is a non-segmented language with morphological inflection. Various
ways have been proposed to segment and lemmatise Japanese text in a step-by-step
fashion, i.e. pipeline models. A common approach adopted by some existing Japanese
morphological analysers is to first segment the text by using language model (LM)
scores (Kurohashi and Nagaol [1998), conditional random fields (CRFs) (Kudo et al.,
2004)), or support vector machine (SVM) (Neubig et al [2011), then lemmatise the
segmented units by dictionary look-up (Morita et al.,|2015) (Kurohashi, [201 8 These
methods work well on limited specific corpora but lack flexibility as they have to load
dictionaries compiled by human beings. Besides, pipeline analysers have a strong
independence assumption between segmentation and lemmatisation. Under such as-
sumption, the two tasks are optimised separately. Although segmentation is necessary
as a pre-requisite for lemmatisation in pipeline models, we still question the necessity
of such independence assumption in general Japanese morphological analysis (JMA),
or cases where we discard the pipeline idea and carry out both tasks simultaneously.

We call it joint or end-to-end.

To conduct both tasks simultaneously, we use the sequence to sequence (seg2seq)
model with an encoder-decoder architecture proposed for MT (Sutskever et al., 2014).
A seq2seq model maps one sequence of variable length to another, similar to a string
transducer. An existing seg2seq framework equipped with attention called Nema-
tus (Sennrich et al., 2017), is adopted to lemmatisation as Lematus (Bergmanis and
Goldwater, 2018), which lemmatises 20 languages by mapping the inflected word
with context to the corresponding lemma. Inspired by Lematus, we adopt Nematus
to Japanese segmentation and lemmatisation, mapping, for example in segmentation,
a sequence of characters (as a non-segmented chunk of text) to a sequence of the same
characters with word boundary delimiters. We expect the joint models to be more

efficient and perform better than the pipeline models.

! Although the actual process of lemmatisation is not explained in the paper, we contacted the authors
and were informed so

1.2. Objective 3

1.2 Objective

So, doweneedsegmentation? Specifically, do we first need explicit segmentation? To

answer this, we must address three sub-questions:

1. Can neural models lemmatise segmented Japanese text?

2. How well can Japanese neural segmentation models work for pipeline analysers

(constituted by segmentation models and lemmatisation models)?

3. Can neural models lemmatise un-segmented Japanese text? Are segmentation

and lemmatisation facilitating each other when learned jointly?

To answer them, we build models for segmentation, lemmatisation and both. First
we compare variants of lemmatisation models to evaluate the performance of neural
lemmatisation (Question [I). To explore the role segmentation plays and its interplay
with lemmatisation (Question [2)), we construct neural segmentation models and com-
bine them with lemmatisation models to make pipeline analysers. In contrast, we also
build joint end-to-end models. We then compare and discuss their pros and cons, and
draw the conclusion of which is the more preferred way for Japanese morphological

analysis (Question [3).

1.3 Contributions

We have made the following contributions to non-segmented language processing:

e The validation of previous work in seq2seq neural lemmatisation on Japanese.
Japanese differs itself from most Indo-European languages as it is a non-segmented

language with inflectional morphology.

e The first attempt of building joint end-to-end models of Japanese segmentation
and lemmatisation, which are seg2seq models with encoder-decoder architec-
ture, in contrast to the existing pipeline models adopting non-neural methods.
Our empirical results show that the pipeline models outperform the joint mod-
els when there is only the same data for both segmentation and lemmatisation,
but the gap between the two types of models is small, and the superiority of the

pipeline models might be insignificant.

Chapter 1. Introduction

e Detailed discussion about segmentation and lemmatisation models for Japanese

and critical analysis about their pros and cons.

e A different research angle of non-segmented language processing. This could
potentially boost related research in neural morphology, IR, MT, and corpus lin-

guistics.

Chapter 2

Related Studies

We provide enough background knowledge for readers without experience in morpho-

logical analysis or neural networks (NNs) to understand the big picture.

2.1 Japanese morphological analysis

As introduced in Section|[I} JMA includes: segmentation, lemmatisation, POS-tagging,
etc. A range of studies discuss segmentation and POS-tagging (Kurohashi and Nagao,
1998)) (Kudo et al., 2004) (Neubig et al.l 2011). It is understandable that segmenta-
tion matters as it is specific and challenging; but POS-tagging could have achieved
better results if lemmatisation was accomplished as the pre-requisite. Lemmatisation
is helpful to POS-tagging as it returns the dictionary form of a word which usually
goes through the process of POS-disambiguation. However, we rarely witness works
targeting lemmatisation. Very often, lemmatisation is viewed as non-trivial which is
done by dictionary look-ups (Morita et al., [2015) (Kurohashi, 2018). This motivates
us to look at lemmatisation - is it really so simple a task? What other approaches can
we explore?

Segmentation, compared with lemmatisation, seems more attractive and challeng-
ing to researchers. Various solutions have been proposed: rule-based methods (Kuro-
hashi and Nagao |1998) (Kurohashi and Nagao, 2003), Hidden Markov Models (Mat-
sumoto et al., |2000), CRFs (Kudo et al., 2004), and SVM (Neubig et al., [2011).
From using n-gram LM scores to estimate the probabilities of each possible seg-
mentation (Kurohashi and Nagao, [1998)), to treating segmentation as sequence la-
belling (Kudo et al., 2004) (Neubig et al. [2011), these methods suffer from strong

statistical independence assumptions and rely on manual feature engineering.

5

6 Chapter 2. Related Studies

Apart from those, there has been a tendency of utilising deep learning on seg-
mentation. For example, segmentation is still treated as sequence labelling or char-
acter tagging, but differently. BIRNN-CRF (Bidirectional Recurrent Neural Network
Conditional Random Field) (Shao et al., 2017 is newly proposed for Chineseﬂ word
segmentation. The RNN part extracts global numerical features, which are fed into
the CRF part; the output from the CRF layer is POS-tagged segmented words. The
proposed model achieves robust good performance on datasets of different sizes, gen-
res and annotation schemes. The idea of jointly learning segmentation and another
task has been witnessed in various studies of Chinese morphological analysis, and this
sheds light on a new perspective of JMA. It becomes our external motivation of jointly

learning Japanese segmentation and lemmatisation.

2.2 Sequence to sequence neural networks with atten-
tion

Neural networks are essentially weighted nodes that operate matrix multiplication and
activation functions. The weights of the nodes are optimised through backpropaga-
tion, tuning the weights by subtracting the gradients towards the direction of the steep-
est descent. Among various kinds of NNs, seg2seq NNs, equipped with an encoder-
decoder architecture, can be used in NLP tasks related to sequence. The core idea is
to learn a vector representation of fixed size for a sequence of variable length through
RNNs (Mikolov et al., |2010), i.e. encoding, then decode it into a sequence also of
variable length through RNNs (Cho et al.,|2014b). This is initially applied in MT (Cho
et al., 2014b) or Neural Machine Translation (NMT) (Sutskever et al., [2014)) where a
sequence in source language is transduced into a sequence in target language. How-
ever, RNN has a problem called recency bias and suffers from long-distance catas-
trophic forgetting. As it encodes the input at each time step and backpropagates the
error through time (BPTT: BackPropagation Through Time), the embeddings of the
input far away from the end of each sequence might not be well learned. This is also
known as gradient vanishing, i.e. gradients smaller than one becomes increasingly

small and close to zero at the end, thus impeding the training. Similarly, there is gra-

'A joint Chinese segmentation and POS tagger based on bidirectional GRU-CRF
https://github.com/yanshao9798/tagger retrieval date: 30/July/2018

2Chinese is also a non-segmented language which requires segmentation; Chinese morphological
analysis is a rich research field which includes many significant works (Jiang et al.| 2008)) (Kruengkrai
et al.| 2009) (Sun, 2011) (Ma and Hovyl 2016).

2.3. Sequence to sequence morphological analysis 7

dient exploding where gradients larger than one would be exponentially increasing
through BPTT. Gradient-related issues are mitigated by variants of RNN: Long Short-
Term Memorys (LSTMs) (Hochreiter and Schmidhuber, |1997) and the light-weight
version of LSTMs, Gated Recurrent Units (GRUs) (Cho et al., 2014a). They are dif-
ferent from normal RNNs in that they both add a linear memory cell which allows
for unhindered information flow across timesteps, thus improving the effectiveness of
long-distance BPTT.

Based on RNNs, attention mechanism (Bahdanau et al.| [2014)) between encoder
and decoder is proposed to allow models to softly search for parts of the encoder side
sentence that are most helpful in mapping it to the decoder side sentence. At each
decoding step, its hidden state is dependent on the previous state, the previous decoder
prediction, and the context vector. The context vector is the summation of attention,
1.e. the weighted sum of the attention scores of the encoder hidden states. The atten-
tion scores are essentially alignment scores, which show how well the inputs around
the current encoder state match with the output at the current decoder state. Taking
an example from NMT, when translating English into Japanese, as the word order is
almost reverse(ﬂ the model has to give more attention to the beginning of the English
sentence when the translation in Japanese comes to the end”} Attention maps are a
useful way to check what part of the encoder sentence the model is given attention to
and how much.

For readers without a deep learning background but have been exposed to computer
science, it helps to imagine seq2seq models as string transducers. For readers from
linguistics background, it suffices to think of seg2seq models as black-box models
which turn one sequence into another. In MT, it could be from an English sentence to
its translation in Japanese. This, of course, can be extended to other NLP tasks dealing

with sequences.

2.3 Sequence to sequence morphological analysis

One recent application of seq2seq models to NLP tasks other than MT is morphologi-

cal analysis, including segmentation (Shao et al., 2017)), lemmatisation (Bergmanis and

Sthe general sentence structure of English is Subject-Verb-Objective (SVO) while in Japanese it is
SOV

“because of the difference in the general sentence structure, when translating the verb in a English
sentence into Japanese, attention of the end of the Japanese sentence should be given to the first half part
of the English sentence. for example (verbs underlined), I do not eat apples -> .\) A Z% FTN 7L\

8 Chapter 2. Related Studies

Goldwater, 2018)), POS-tagging (Plank et al.,|2016), dependency parsing (Zhang et al.,
2016)), etc. Among them, lemmatisation receives least attention, as it is not always a
barrier for NLP of most languages, let alone those without inflectional morphology.
But inflectional morphology is exactly the biggest challenge lemmatisation faces. A
language with rich inflectional morphology means the language has productive for-
mation of words. For instance, German is known as very productive, because of its
compounding rules where several nouns can be fused together into a compound. This
leads to the data sparsity problem. As a downstream NLP task, lemmatisation could
mitigate this problem. Lemmatisation on morphologically rich languages can effec-
tively reduce the vocabulary size of a language, save computation, and represent rare
or unseen words by linking them with their lemmas which at least appear in dictionar-
ies.

Neural lemmatisation was first implemented as Lematus (Bergmanis and Goldwa-
ter, 2018)), a neural lemmatiser. As context is believed to be the key of better per-
formance, Lematus makes use Nematus (Sennrich et al.l [2017), to conduct context-
sensitive lemmatisation (an example of Lematus’ input and output in Table[2.T)). Lema-
tus experiments with 20 topologically varied languages, with different types of context
representation units (character, byte pair and word) and context lengths (from 0 to
25). The empirical results from Lematus show that encoding 20 characters from both
sides of the centre word works best for most languages. However, Lematus lacks solid
justification for supporting the hypothesis that, context is the key in improving the
performance. For some languages (e.g. Table 1 from Lematus), context-free models
even outperform the context-sensitive lemmatisers or are on par with them - context
becomes uninformative in some cases. Now that Nematus is equipped with attention,
it could have been more ideal if attention maps were demonstrated. Based on Lematus,
we experiment with a new language with completely different topology, Japanese, try
out varied context units and lengths, and see whether it is context that brings decisive

progress.

Input: h ree <s><lc>bases<rc>are<s>t

Output: basis

Table 2.1: An example of the input and output for model 5-Char in Lematus.

Besides lemmatisation, segmentation is also non-trivial for non-segmented lan-

guages. By tradition, multi-class classification is the most popular view of segmen-

2.3. Sequence to sequence morphological analysis 9

tation. Given a sequence of characters, segmentation models classify the characters
into the beginning, the end or the middle of a word. The models extract useful features
learned from data, then use sequence labelling models to tag the sequences (Jiang
et al., 2008) (Kruengkrai et al., 2009) (Sun, |2011) (Wang et al., |2011) (Shao et al.,
2017). Despite the promising performance of these approaches, they all require so-
phisticated feature engineering. Inspired by the sequence modelling idea and thanks to
the advent of seg2seq models, the idea of conducting seg2seq segmentation comes up
to us. We model segmentation as to predict the probabilities of word breaks between
adjacent characters (Section4.2)), i.e. the joint probability of the current character clos-
ing the current word and the next character starting a new word. This eases the data
sparsity problem which the previous sequence labelling models suffer from, as we do

not require feature-labelled data.

Chapter 3

Experimental Design

3.1 Data

3.1.1 Corpora and pre-processing

We use the Japanese GSIf] corpus from Universal Dependencies (UDEI (hereinafter
UD_Japanese).

As pre-processing, we remove Arabic numbers and symbols tagged as PUNCT (punc-
tuation). After pre-processing, the number of word&lemma pairs in each dataset is:

141108 in the training set; 10093 in the development (dev) set; 11085 in the test set.

3.1.2 Statistics

To understand the corpus better, we compute the percentage of ambiguous words and
word-lemma-copying (Table Ambiguous words are words with multiple possible
lemmas in the corpus (Table[3.1]). Word-lemma-copying is the phenomenon that a word
has itself as its lemma. The percentage of word-lemma-copying informs us of how
accurate a baseline which simply copies the words as their lemmas (base-copying)
could be. We convert the percentage into the accuracy of the baseline by subtracting

the percentage from 100%.

!'Universal Dependencies Japanese GSD corpus https://github.com/UniversalDependencies/UD_Japanese-
GSD retrieval date: 16/July/2018

2Universal Dependencies http://universaldependencies.org retrieval date: 16/July/2018

3notice that although we are getting access to the data statistics of the test set, we keep it untouched
until test time.

11

12 Chapter 3. Experimental Design

Category Example

Word Lemmas
lemmas of " 55 (win, noun)
different POS tags 5

5> (win, verb)

incorrect or _[68lC (the same, correct)
inconsistent annotation G C

[G) U % (a non-existent word, incorrect)

lemmas of 11 < (verb; to go, to walk)

1T P
the same POS tags ” 1T 7 (verb; to hold, to execute)

Table 3.1: Three categories of ambiguous words in UD_Japanese training set.

Dataset Percentage of ambiguous words Accuracy of base-copying

training 23.91% 85.66%
dev 16.95% 85.38%
test 18.15% 84.13%

Table 3.2: Percentage of ambiguous words in UD_Japanese and the expected accuracy

of base-copying (copying words as their lemmas).

3.1.3 Basic units

In later experiments, we use three types of basic units: character, byte pair, and wor-

pheme.

3.1.3.1 Character

Characters in Japanese include hiragana, katakana, and Chinese characters kanji. Gen-
erally, hiraganaE] is more used in traditional Japanese words; katakan{] is used in loan-
words; kanjﬂ initially used as ateji (“ruby”), can replace some characters in a word
written in hiragana. See Appendix for a sample Japanese sentence. These char-
acter types contribute to the variety and the complexity of Japanese writing system,
as well as the large size of a character-level lexicon. Our Japanese character lexicon

contains 2818 elements (Table 3.6), while an English one may only have 150.

4some examples of hiragana: ¥, \ >, h>
>some examples of katakana: +, 1, 71
some examples of kanji: {5 7F

3.1. Data 13

3.1.3.2 Byte pair

Byte Pair Encoding (BPE) is for compressing data (Gage, |1994). Byte pairs are ob-
tained by recursively merging the most frequent byte pairs - character pairs, into new
symbols. In NMT, frequent byte pairs are replaced with a symbol of the bytes com-
bined, for example, n g -> ngand i ng -> ing. Then words such as doing would
likely be represented as d o ing in a character-level model. By BPE, the lexicon size
is largely reduced through the mapping of byte pairs onto the words, thus mitigating
the data sparsity problem (Sennrich et al., 2015). For efficiency, byte pairs are only
learned within Word The times of merging operation should be optimised according
to languages - in Lematus, 500 for all 20 languages. We follow Lematus’ decision,
although further optimisation is worth discussing for Japanese. The byte pairs are
jointly learned from the words in the input and the reference output in the training data

to ensure better outcome@

Our BPE lexicon has 500 byte pairs, 472 of which are unique lexicon entriesﬂ Ta-
ble[3.3|shows some representative byte pairs in ranked order of frequency@ The most
frequent byte pairs are mostly inflectional morphemes: 3% (Ist), \» % (2nd), 11 %
(3rd), 7L\ (4th), L\ (23rd), and SN % (32nd). However, there are also some pairs
that do not have morphological meanings, such as ') — (33rd) and 7 > (34th) which
happen to appear frequently in words. Besides, some whole words are also learned
as byte pairs: |Z & - T (according to, a frequent preposition), 1Z%f L T (to, for, a
frequent preposition), BL{E (now, a frequent noun) and { F (use, a frequent verb).
Apart from Japanese words, some byte pairs in English are also witnessed: in, er, am,
etc. These are even more deviated from the objective of extracting morphologically

meaningful byte pairs in Japanese.

The BPE lexicon should be constituted by the characters in the character lexicon,
plus the byte pairs. However, as we use separate lexica for encoder and decoder (Sec-
tion [3.2.1.2)), they can be of different sizes. The difference comes from the byte pairs
learned in each side, i.e. there are 12 byte pairs from the decoder side that do not

appear at the encoder side. So the BPE lexicon size is: 2818 4-472 — 12 = 3278.

’Subword Neural Machine Translation https://github.com/rsennrich/subword-nmt retrieval date:
17/July/2018

8as suggested in https://github.com/rsennrich/subword-nmt retrieval date: 17/July/2018

%.g. & % and & %</w>. The former is a byte pair appearing in the middle of a word while
the latter at the end of a word, but they become the same entry in a lexicon as they have the same
orthographical form

19each byte pair is made by merging the characters split by the space

14 Chapter 3. Experimental Design

Freq. rank Byte pair Freq. | Freq. rank Byte pair Freq.
1 T B<s> 6455 67 12k - T<s> 244
2 W B<s> 3176
3 N S<s> 2832 81 Bl fF<s> 206
4 7ToUics> 1882
5 m H<s> 1863 91 ff 180
23 L \i<s> 470 113 I2%f L T<s> 165

319 in 70
32 5 Nb<s> 400
33 - 390 450 er 52
34 7 388 500 am 44

Table 3.3: Examples of byte pairs learned from UD_Japanese training set in the order

of frequency (including inflectional morphemes, frequent prepositions, nouns, etc).

3.1.3.3 Worpheme

Worpheme is made up of word and morpheme, indicating its being a morpheme-like
word unit. Worpheme approximates to morpheme in English, and it is also the basic
segmentation unit in UD_Japanese. For example, the word Jif A /= (“played”) is seg-
mented into two worphemes: i# A and 72, the former being the verb stem and the

latter the morpheme of verb past tense inflection.

3.2 Models

We organise the experiments to answer the three sub-questions in Section There
are three types of models for: lemmatisation (lemmatisers), segmentation (segmen-
tisers), and both (segmatiserﬂ. Each model is a seg2seq model, implemented by
Nematus. Table [3.4] displays the models, and the relationship between them. The best
lemmatiser and the best segmentiser are selected among their variants; they constitute
the best pipeline segmatiser. The best pipeline segmatiser is then compared with a
joint segmatiser, the result of which gives us the better segmatiser. It is worth noting
that, we only compare the performance scores of different models to select the best

models. Although there are a lot more factors worth considering, e.g. efficiency and

segmatiser is made up of segmentiser and lemmatiser

3.2. Models

15

flexibility, here we focus more on the scores for easier comparison. The naming of the

sub-models will be explained later.

Models

Lemmatiser Segmentiser

Segmatiser

Sub-models

word2word

sent2sent sent2sent

sent2sent

base-copying
base0
char5
charl0
charl5
char20
char25
char30
bpe5
bpel0
bpel5
bpe20
bpe25
bpe30
worpheme5
worphemel0
worphemel5
worpheme20
worpheme?25

worpheme30

char char maxratio

bpe bpe lenpred

Comparison

char

bpe

the better segmatiser

Table 3.4: The complete list of our models: Lemmatisers, segmentiser, and segmatis-

ers. The top half list all the models we construct, and the bottom half indicates how

we compare between different models and select the best models; models in the same

non-black colour are compared with each other.

16 Chapter 3. Experimental Design

3.2.1 Lemmatisation models

Can neural models lemmatise segmented Japanese text? We explore different ways of
lemmatising segmented Japanese text, regarding mode, context unit type, and context

length.

3.2.1.1 Mode

There are two modes of lemmatisation: word-within-context (word2word) and sentence-
to-sentence (sent2sent). In word2word models, the input and output follows Lema-
tu Special symbols are used to indicate specific information for training (Table .
Unlike word2word, in sent2sent models, both input and output are full sentenceﬁ—l—_g]D

and the output is a sequence of lemmas of the input; full context is encoded.

Symbol Meaning
<w> the start of a sequence
</w> the end of a sequence
<s> space

<lc> (the end of the) left context

<rc> (the start of the) right context

Table 3.5: Special symbols for formatting input and reference output. In some later
models, part of these symbols only appear in the encoder lexicon, as there is no left
and right context at the decoder side. This explains the different sizes of some encoder
and decoder lexica in Table

3.2.1.2 Context unit type

In word2word lemmatisers, we use these context units: character, byte pair and wor-
pheme. Different unit types are believed to capture different linguistics information
thus performing differently in NLP tasks; their performance also varies among lan-
guages (Vania and Lopez, 2017).

In word2word character-context models, the model name indicates the context

unit, and the centre word is always split into characters.

Zregardless of its name, word2word is essentially still a seq2seq model encoding and decoding
sequences - words represented by character
3even in the case when the training sample is only one word, it is still viewed as a sentence

3.2. Models 17

Table [3.6| reports the sizes of the encoder and the decoder lexica, and the lexicon
overlap. Models in each context unit group share the same encoder and decoder lex-
icon. The decoder lexicon for all models is the same, and is a subset of the encoder

lexicon. We use separate lexicon for encoders and decoders to save computation.

Context unit type Encoder lexicon Decoder lexicon Overlap

char 2818 2811 2811
bpe 3278 2811 2811
worpheme 22954 2811 2811

Table 3.6: The encoder and decoder lexicon size and the lexicon overlap of the context
models. Notice that the difference between the encoder and decoder lexicon of char
models comes from the special symbols (<s>, <lc>, <rc>, '’ (the last symbol is
generated by us mistakenly forgetting to delete the last new line in the file)) used only
at the encoder side, and some characters (H., 1z, 5X) only appear at the encoder side.
The bpe encoder lexicon size is already explained in Section Both the char
and the bpe lexica have a high percentage of overlapping vocabulary; the worpheme

encoder lexicon has a much larger size.

3.2.1.3 Context length

The context length ranges from 5 to 30 units, counted from both sides of the to-be-
lemmatised centre word. Besides, we have a baseline base0 which encodes zero con-
text as opposed to context-aware models.

However, for models with bigger window sizes, there is not always enough context
to encode. We conjecture that would be a factor of unfair comparison between models.
We compute the average length of encoded context for word2word models in Table
For models with smaller window sizes, the context being encoded is close to the
specified number; however, with an increasing window size, especially for 25 and 30,

most models do not have enough context to encode.

3.2.2 Segmentation models
3.2.2.1 sent2sent segmentiser

We start from a sent2sent segmentiser which segments an un-segmented input by out-

putting space symbols between characters where it believes true. An example of input

18 Chapter 3. Experimental Design
Model Average left context length Average right context length
char$ 4.53 4.48
char10 8.41 8.23
charl5 11.66 11.34

char20 14.32 13.87
char25 16.48 15.91
char30 18.20 17.53
bpe5 4.47 4.36
bpel0 8.19 7.88
bpel5 11.18 10.67
bpe20 13.54 12.85
bpe25 15.36 14.52
bpe30 16.74 15.77
worpheme5 4.25 4.25
worphemel(7.32 7.32
worphemel5 9.43 9.43
worpheme2(10.82 10.82
worpheme25 11.70 11.70
worpheme30 12.25 12.25

Table 3.7: Actual length of context being encoded in word2word models. The length

of context being encoded is not always proportionately increasing with the speci-

fied/expected context length.

and output is:

Input: <w>

Output: <w>

by K
i <s> b

T </w>
H <> T T <w

The segmentation performance is evaluated by F1 score of the correctly segmented

units over the whole corpus (details in Section [3.4.2]).

3.2.2.2 For better segmentation length matching

Besides fine-tuning the segmentisers, we also attempt to put length constraints on out-

put for better performance, if length mismatch turned out to be a critical issue. Our

3.2. Models 19

approaches are: constructing an output length predictor for each input sequence; con-
straining the maximum output length for each input sequence during decoding.

The length predictor is a seq2seq model which takes as input a sequence of char-
acters, and returns the predicted output length. Suppose the input sequence is <w> H
hy # B T 9 </w>andits correct segmentation is <w> H h¥ @ TT </w>.
Then the actual output for segmentation (with space symbols) in character representa-
tionis <w> H <s> h* <s> # B <s> T F </w>. So the expected output length
is 11 . We use UD _Japanese to learn the length prediction.

The second approach puts length constraints on the output directly. The length
constraint is set as the maximum ratio of output length to input length in UD Japanese
training set. We call the ratio max (| output | : | input |) ormaxratio as the parameter
name in Nematus. Table [3.8]reports the length statistics of the training set when the
sequence is split into characters or byte pairs. The average ratios are around 1.5 and

the maxratio close to 2. So we set 2 as maxratio for validation and testin

Unit type Average |output|: |input| max(|output]|:|input])
char 1.5123 1.8182
bpe 1.6076 1.9412

Table 3.8: |output]:|input|: Length statistics of UD_Japanese training set. The

maximum ratio of output length to input length is around 2.

3.2.3 Segmatisation models: segmentation & lemmatisation mod-

els

Segmatisation is made up of segmentation and lemmatisation. Similarly, a segmatiser
is a model which does segmatisation.

A segmatiser could either be a pipeline or a joint/end-to-end one. If the optimi-
sation of segmentation and lemmatisation is separately done, it is a pipeline model.
Unlike a pipeline model, a joint segmatiser is optimised as an integrated system to
lemmatise un-segmented text. It is a big black-box which handles both tasks simulta-
neously; indeed, we cannot inspect how it “segments” the text in order to lemmatise,

or know if it “segments” at all.

4during training time, the sequences will not be cut off according to the maxrat io length constraints

20 Chapter 3. Experimental Design

We compare the best pipeline segmatiser with a joint segmatiser. Our best pipeline
model is constituted of the best segmentiser and the best lemmatiser, achieving the
highest scores. The output of the segmentiser is fed as input to the lemmatiser. The
joint segmatisers take un-segmented input and lemmatise it into segmented units. There
are two joint segmatiser variants, with different basic units: char and bpe. Table 3.9

displays examples of input and output of the joint segmatisers.

Model Input & Output
char input <w> X 5 & B o T T </w>
output <w> X & <> BB D <s> B <w>
bpe input <w> X S& B o TT </w
output <w> & S& <> 5 0o <s> B </w>

Table 3.9: Examples of input and output for the sent2sent segmatisers.

3.2.4 Baseline models

We have internal and external models as baselines. For lemmatisation, a context-free

model base0 as the internal baseline, is compared with the context-aware models.

Meanwhile, we have three existing Japanese morphological analysers, MeCaHE
JUMANEI and JUMAN+ as external baselines. They are compared with our seg-

mentisers and segmatisers, but cannot be used as pure lemmatisers.

Table compares the external baselines regarding dictionaries, which provide
segmentation and lemmatisation criteria. Different dictionaries usually have divergent
segmentation and lemmatisation criteria, and those differences would cause systematic

€ITrors.

MeCab and JUMAN adopt CRFs and n-gram LM scores respectively. JUMAN++
interpolates n-gram LM scores with RNNLM scores, to take into account semantic
plausibility of word sequences. Consequently, JUMAN++ works better in some am-

biguous cases (Morita et al., 2015)).

I5MeCab http://taku910.github.io/mecab/ retrieval date: 15/July/2018
16 JUMAN http://nlp.ist.i.kyoto-u.ac jp/index.php?JUMAN retrieval date: 15/July/2018
17 JUMAN++ http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN++ retrieval date: 15/July/2018

3.3. Training 21

Available dictionaries
MeCab IPAdid'Jumandid'*Unidic?]
JUMAN Jumandic
JUMAN++ Jumandic

Table 3.10: Baseline models: three existing non-neural (or not completely neural)

Japanese morphological analysers and their dictionaries.
3.3 Training

3.3.1 Framework

We utilise the Theano implementation of Nematus (Sennrich et al., [2017). There are
lots of tunable parameters: encoder/decoder layers, dimensions of word embeddings
and hidden layers, batch size, etc. The details of parameter tuning go to the next
section.

As a seq2seq framework, Nematus has an encoder-decoder architecture. We use
GRUs for the encoder and the decoder. Attention mechanism is employed in between
to compute the context vector.

The loss function is sentence-level softmaxed cross-entropy. Loss is optimised by

back propagation. For inference, decoding is based on beam search with a beam sized
12.

3.3.2 Hyper-parameters

We tune the hyper-parameters for better performance. Table Table and Table
in Appendix |C|list the hyper-parameters for our models.

For most hyper-parameters of word2word lemmatisers, we follow the choices of
Lematus. The only thing we change is the maximum input length - from 75 to 150, as
we want to include more training sentences.

Based on the hyper-parameters for the lemmatisers, we find it helps achieve better
performance for the segmentisers, by increasing the dimensions of word embeddings
and hidden layers. This matches our expectation of segmentation being more compli-
cated and requiring more parameters to model well. Besides, we make the encoder
layers bidirectional to better encode context from both sides. This also increases the

performance.

22 Chapter 3. Experimental Design

For the segmatisers, by increasing the number of encoder and decoder layers from
2 to 3, there is a consistent increase in the performance in several pairs of comparison.
With more parameters, the models can learn meaningful patterns better that are useful
for both tasks.

Notice that in each group of models where there are sub-models using different unit
types (e.g. sent2sent-char and sent2sent-bpe segmentisers), we use the same hyper-
parameters. We expect it might bring unfairness when comparing sub-models. In later
experiments, we select the best models based on the performance scores. But when the
gap between sub-models is small, we do not intend to draw strong conclusions about

the models’ superiority or inferiority.

3.4 Evaluation

3.4.1 Accuracy: token-level

Token-level accuracy is used to evaluate the lemmatisers, as there is one-to-one cor-
respondence between the input token and the output lemma. The computation is to

divide the number of correctly lemmatised tokens by the total token count.

3.4.2 F1 score: sentence-level

Sentence-level F1 score over the whole data set is used to evaluate other models
(sent2sent lemmatisers, segmentisers, and segmatisers), where the reference and the
actual output might be of different lengths.

F1 score is a benchmark balancing precision and recall. Precision is the amount of
correct output tokens divided by the amount of reference tokens; recall is the amount
of correct output tokens divided by the amount of output tokens. F1 score is then

computed as:
F1 = (2 X Precision x Recall) (Precision + Recall)

However, F1 score faces the problem of free word order. We modify F1 score to
constrain the word order by aligning uni-grams between reference and output. Here
is an example of computing constrained F1 score for segmentation (Table 3.11)). The
second % in the output is a mistake and should not be counted as a correct label

for the first 7 in the input. By constrained F1 score computation, this extra % is

3.4. Evaluation 23

viewed as a wrong output label as it does not align with anything in the reference at

the corresponding position.

Bz 5 =0
Input T2y 2N T kFEIC AL

s> & o<s> I 2 B <s> 1= % <s>

T 2 Y 2N T <s> K< I s> &
Output <s> A F<s> L o<s> [z
Merged output 28 = 2 5% /=% T2 Y235 kg = A¥ L -
Reference 2 Hz5 /=6 T2 207 kg ilc A L 7=
Precision 10+-11=0.9091
Recall 11+-10=1.1

F1 (2% 0.9091 x 1.1) = (0.9091 + 1.1) = 0.9955

()

Table 3.11: Example of computing constrained F1 score for segmentation. The second

% in the output is not counted as a correct label for the % in the reference

Chapter 4

Results and Discussion

4.1 Lemmatisers

4.1.1 word2word lemmatisers

Token-level accuracies are computed on the test set for baselines base-copying and
base(, and all word2word lemmatisers. The results are in Figure The accuracy
of base-copying (from Table 84.13%) is not plotted due to limited space.

From Figure 4.1} char lemmatisers almost always outperform bpe and worpheme
counterparts, except for window size 10. Regardless of their superiority, their per-
formance is close to that of bpe lemmatisers. After inspecting the char and the bpe
lexicon, we conjecture it is due to the high overlap between the two lexica, that they
achieve similar results. The char lexicon is a subset of the bpe lexicon after 500 times
of merging operation (Table[d.T)). In the bpe lexicon, in addition to the byte pairs which
are more likely to be better learned in the neural space, there are as many infrequent
characters as in the char lexicon, whose neural representation cannot be well learned

in either case.

Model Encoder lexicon size Overlapping vocabulary
word2word-char 2818
2818
word2word-bpe 3278

Table 4.1: Encoder lexicon statistics of word2word char and bpe lemmatisers. The

bpe lexicon includes the char lexicon.

Regarding context length, there is no clear relationship between context length and

performance. For most languages Lematus experimented with, window size 20 is a

25

26 Chapter 4. Results and Discussion

Accuracy on UD_Japanese test set

100 \
—e— base(
—o— char-
99 —e~ bpe-
S worpheme-
z
g o8 - -
3
<
97 ¢ N
96

0 5 10 15 20 25 30
Context size

Figure 4.1: The word2word lemmatisers: Accuracy on UD_Japanese test set. char
lemmatisers are almost consistently outperforming the rest; the results of char lemma-
tisers are always very close to those of bpe lemmatisers. All context-aware lemmatisers
outperform the context-free lemmatiser base0 (96.95%) and base-copying (84.13%)

which copies the words as their lemmas.

sweet spot (Bergmanis and Goldwater, [2018]), as it contains enough context without
leading to sequences too long for NNs. However, 20 does not guarantee the best per-
formance in any case for us. The best lemmatisers categorised by context unit are:
char30, bpe2S, and worpheme25. Japanese lemmatisers seem to learn more from
longer context. Nonetheless, as in Table the length of the actual context being
encoded does not necessarily increase proportionately with the specified number. The
unfairness caused by the sentence length distribution might explain the close results of

the lemmatisers with bigger context windows.

Compared with the non-neural baseline base-copying, all neural lemmatisers out-
perform. They achieve an increase of at least 12% in accuracy than base-copying
(84.13%). Among the neural lemmatisers, all context-aware models outperform the
context-free model, by 1.65% on average. This encourages the idea of context-aware

lemmatisation.

Although the context-aware lemmatisers achieve high accuracies, we are curious
about the mistakes they make. They make three main types of mistakes. First, for
unseen characters, the output is always the least frequent characters, and different

models choose different characters. An example is in Table 4.2 In contrast, base0 is

4.1. Lemmatisers 27

good at copying and pasting unseen characters, especially when the input is only one

character.

Input ¢ Reference ¢

char5 {% | bpe5 %! | worpheme5 G
char10 JZ | bpel0 1% | worphemel0 |
charl5 1% | bpel5 & | worphemel5s 71
char20 % | bpe20 % | worpheme20 i
char25 - | bpe25 % | worpheme25 I
char30 #f | bpe30 JH | worpheme30 fif

base0 ¢

Table 4.2: An example of different models lemmatising an unseen character by out-
putting different least frequent characters. Only base0 outputs the correct answer by
copying and pasting the word itself.

Second, while the context-free lemmatiser copies and pastes the words as their
lemmas mostly, the context-aware lemmatisers seem to disambiguate between different
lemmas for the same word form. Some obvious examples are (possibles lemmas in the
brackets): T (T, T5%),L (L,3 %), 3 (3,73 5),etc. The correct disambiguation
of them largely accounts for the increased accuracies of the context-aware lemmatisers.
Instead of blindly outputting the most frequent lemma, the context-aware lemmatisers
seem to rely on something else to make judgments. Is context the answer here? We
plot out the attention maps for some correctly and incorrectly lemmatised ambiguous
words by models of different context unit types or context lengths (Figure VS.
Figure[B.2]in Appendix [B.I). The attention maps do not inform any use of context for
correct disambiguation. At each decoding step, almost 100% attention is attended to

the centre word; negligible attention is distributed to the rest of the sentence.

Third, base0 is confused by the same word forms with different POS-tags, and
the context-aware lemmatisers do not bring obvious improvement. An example is 7
Lt —> %L /%L & where % L & and % L & share the same stem %% L but
have different inflectional suffixes which indicate their POS ({s: verb; 4: noun). All

models make mistakes in lemmatising POS-ambiguous words.

28 Chapter 4. Results and Discussion

4.1.2 sent2sent lemmatisers

The two sent2sent lemmatisers, sent2sent-char and sent2sent-bpe, are evaluated by
sentence-level F1 score. We prefer F1 than accuracy, as even though segmentation
information is provided (by putting space symbols <s> between groups of characters
that make up words), there is no guarantee that neural models could produce exactly
the same number of words as the input. This concern is supported by our empirical
results (Table & Table . In case of length mismatch problems, F1 score ensures

the smooth progress of evaluation.

Models F1 Encoder lexicon size Overlapping vocabulary
sent2sent-char (0.9853 2818 2818
sent2sent-bpe 0.9796 3278

Table 4.3: The sent2sent lemmatisers: F1 score on UD_Japanese test set and encoder
lexicon statistics. Two models achieve close results; the byte pairs are not bringing

much difference.

Both sent2sent lemmatisers achieve an F1 score around 0.98, and the gap between
them is negligible 0.0057 (Table .3)). As pointed out in Section [4.1.1] the fact that the
bpe lexicon includes the char lexicon, might contribute to their close F1 scores here
as well. The learning of byte pairs does not help.

As a lemmatiser given perfect segmentation, it is supposed to give an output of
the same length as the input. However, this is not always true in reality and F1 score
is not informative. We evaluate the length mismatch problem of both lemmatisers
(Table for char & Table for bpe). Among 558 test sentences, only 4 or 5
mismatched in length. We mark the incorrectly lemmatised units in the output red, and
the missing output in the reference green. For both lemmatisers, the biggest length
mismatch comes from sentence 5S11. The average length mismatch is 25.5 (char) and
15.4 (bpe) words. The char lemmatiser always terminate the output halfway; for
the bpe lemmatiser, three sentence are not finished but the rest two output too much.
Interestingly, the output lengths of the last three sentences are all around 70 in char,
and around 80 in bpe. We conjecture this might be due to the inability of NNs to handle
long sequences: the information flow becomes increasingly weak with the increasing
sequence length. Besides, as the input in bpe is shorter than that in char, the bpe
lemmatiser is more likely to output sequences closer to the actual reference, as the

information is stronger even after having gone through a long distance.

4.1. Lemmatisers 29

Sentence id Reference & Output Length
YL — nt T———5& fFO T
Ref 5 X 7z 39
246 I ,e, ,;,E ,,,,, :a_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Y7 — I F———5& fFDO <
Out k% F3 7 31

Ref 89
335 m T
Ot Zh T A2 T5 < 63
HEWN 72 1150 M5 =
Ref 102
463 m o
Oout HEMWN 72 415 hd /= 69
e o RN m %= tIYWE< T #H %
Ref 113
511 —---- e e
Out M o MFl W Z= YIWFELS T HMHH =% 73

Table 4.4: Test sentences with mismatched length in the sent2sent-char lemmatiser.

The reference outputs all terminate halfway, three of which with a length around 70.

4.1.3 The best lemmatiser

The lemmatiser with the best performance on the test se is selected as the best lem-
matiser. Although, word2word and sent2sent lemmatisers are evaluated by different

metrics, as F1 is a balanced benchmark for accuracy, the comparison is valid.

1it makes more sense to choose best models based on validation performance, but in our cases, the
model selected by validation performance is the same as selected by test performance. As we do not
include validation scores anywhere, we just select models based on test performance.

30 Chapter 4. Results and Discussion

Sentence id Reference & Output Length
13 Ref EAN b Wi =6 XKz 2 6
Out EAN H W3 =5 s 2 x 7

72 o7 Gl Icx-7T bhds FH oo

Rl BRES & po wT Y H5 2T K B
2 o7 Al IcXx-7T bhds Foo
REEtR & o7T aldlfidl 1ck-7T bhb
¥ o
out WHEEMG & H25 139 3 H3E F3 Hwn 41
Zh T AR 5% T Wi = NE fEt
O R ICXxs BHE AL kR
Ref 89
335 ----- e
Zh T AR T5% T Wi = NFE fEt
Oout o fERICKkD ik b ek 78
HE®R 72 17175 s =Y BHERIE %= 59
BE two SE v HFH
Ref 102
463 ----- e e
HEWN 72 1175 s =h BHFRIE %= 5
Out BEHE &twH S v HBHF T 79
e oo R m %= YW T HiH
Z DK% FT I &% W = kCZ
Ref 113
3 1 e

e oo R m o= tIWEI< T HIH
Out = DK% FT I &5 W = kC 79

Table 4.5: Test sentences with mismatched length in the sent2sent-bpe lemmatiser.
Two of the sentences output too much; the other three terminate halfway, with a length
of around 80.

4.2. Segmentisers 31

On average, word2word (98.70%) lemmatisers outperform sent2sent (0.9825)
lemmatisers. The inferiority of sent2sent lemmatisers could be partly explained by
the length mismatch problem, which is never a problem for word2word lemmatisers.
Although regarding overall scores, sent2sent lemmatisers are not preferred more, they
do not encode context for each word, resulting in a smaller training set and more effi-
cient training. As long as the length of the test sentences can be controlled, the length
mismatch problem could be largely got rid of.

Among all neural lemmatisers, word2word-char30 achieves the highest accuracy

98.99%, thus selected as the best lemmatiser.

4.2 Segmentisers

4.2.1 sent2sent segmentisers

The sent2sent segmentisers are evaluated by F1 score. The baselines are MeCab,
JUMAN and JUMAN++. As they all rely on dictionaries to look up entries during
segmentation, and Jumandic is the only dictionary available to all of them, we use
Jumandic for fairer comparison; meanwhile, we load MeCab with its recommended
dictionary IPAdic. The F1 scores of sent2sent segmentisers char and bpe and the
baselines are in Table 4.6

Model Dictionary F1 score
MeCab IPAdic 0.9067
MeCab Jumandic 0.7667
baseline

JUMAN Jumandic 0.7708

JUMAN++ Jumandic 0.7716

char N/A 0.9208

sent2sent-

bpe N/A 0.9223

Table 4.6: F1 scores of the baselines and sent2sent segmentisers. MeCab with IPAdic
works the best; with Jumandic, three baselines achieve close results. Two sent2sent

segmentisers perform similarly.

All baselines perform similarly when using Jumandic. However, MeCab with
IPAdic achieves a much higher score. This supports our hypothesis in Section [3.2.4]

that using different dictionaries might cause systematic errors. The analysis of the in-

32 Chapter 4. Results and Discussion

consistency is in Appendix From our observation, UD_Japanese matches more
with the annotation style of [PAdic. This explains the high score of MeCab equipped
with [PAdic. We move on to explore the behaviour of JUMAN and JUMAN++ when
both using Jumandic. Their F1 scores are very close, with JUMAN++ being only a
bit higher. But we do observe JUMAN++ good at handling limited ambiguous cases
(discussion in Appendix [A.3)).

Compared with the baselines, both sent2sent segmentisers achieve higher F1 scores,
with bpe surpassing char by 0.0062. As the byte pairs are learned within words, they
are providing correct segmentation to the bpe segmentiser, which is not the case for the
char segmentiser. For example, in the sequence of byte pairs 355> L\ T3, the
true segmentation is 35h* L \y T As we already know that L \ 1, as a byte pair,
must be grouped together, the segmentiser does not need to judge whether to split L
and \» or not; however, the char segmentiser faces L and \» as two characters to be
either grouped or split. Thereby, byte pairs offer prior information about segmentation,
which benefits the segmentiser (“cheating”).

Besides F1 scores, we check the length mismatch of both segmentisers. Among
the 558 test sentences, the char segmentiser outputs 272 (48.75%) of them with wrong
lengths, and the bpe segmentiser makes length mismatch mistake in 251 (44.98%) of
them. As their error rates are high, we attempt to constrain output length as proposed
in Section

The first model is sent2sent-lenpred, an output length predictor. As the error rates
are almost as high as 50%, we only adopt a length predictor if its accuracy is above
50%. For the length predictor, the input is a sequence of characters, and we format the
reference output in two ways: numbers as digits (e.g. 45 as 4 5) to generate unseen
numbers flexibly, or numbers themselves (e.g. 45 as 45). As results, neither versions
of the predictor could get a decent accuracy on the test set (3.40% & 1.25%). This ap-
proach is unsurprisingly failed. After all, the symbols indicating lengths cannot convey
ordinal information, and are treated as normal vocabulary by the neural networks.

Our second approach is more straightforward as it directly constrains the out-
put length. We experiment with the best segmentiser sent2sent-bpe, by constrain-
ing the output length up to twice the input length. From Table the F1 score of
sent2sent-bpe-maxratio2 is 0.9270, higher than that of sent2sent-bpe, 0.9223. Al-
though the length mismatch error rate of sent2sent-bpe-maxratio2 is 44.98%, on par
with sent2sent-bpe, the total amount of mismatched length is decreased by 49 units.

To conclude, putting length constraints during decoding does help sent2sent segmen-

4.3. Segmatisers 33

tisation.
Model Mismatch error rate Mismatch unit count
char 48.75% 457
bpe 44 .98% 413
bpe-maxratio2 44.98% 364

Table 4.7: Length mismatch error rate and mismatch unit count for sent2sent seg-
mentisers. Adding output length constraint does mitigate the length mismatch problem,

regarding the unit count.

4.2.2 The best segmentiser

Comparing the F1 scores of the baselines and our sent2sent segmentisers, we select

sent2sent-bpe-maxratio2 as the best segmentiser.

4.3 Segmatisers

4.3.1 Baseline segmatisers

The baselines are MeCab, JUMAN and JUMAN++. As we already know their incon-
sistent segmentation issues from Section [4.2.1] we infer there must be inconsistency
in lemmatisation as well, as they rely on dictionary look-ups to lemmatise the seg-
mented units. If the sequence can be segmented into various ways, the lemmatisation
should also vary. All three baselines use the same dictionary Jumandic to segmatise

the test set. Table 8| displays their F1 scores of correctly lemmatised segmented units
(MeCab using IPAdic included).

Model Dictionary F1 score
MeCab IPAdic 0.8792
MeCab Jumandic 0.7952
JUMAN Jumandic 0.8081
JUMAN++ Jumandic 0.8144

Table 4.8: Segmatisation F1 scores of baseline segmatisers. MeCab with IPAdic works

the best; with the same dictionary Jumandic, all baselines achieve similar F1 scores.

34 Chapter 4. Results and Discussion

From Table the inconsistency issue still exists, as expected. When using Ju-
mandic, the baselines perform similarly, with MeCab falling behind two Juman fam-
ily members only by 0.1605 on average. JUMAN++ outperforms JUMAN by 0.063.
This superiority should be partly accounted to the better segmentation performance of
JUMAN++ (Section |4.2.1J).

4.3.2 Pipeline segmatisers

Combining any lemmatiser in Section with any segmentiser in Section 4.2 we
obtain a pipeline segmatiser. The best pipeline segmatiser is thus obtained by combin-
ing sent2sent-bpe-maxratio2 segmentiser, with word2word-char30 lemmatiser. We
take the segmentation results from sent2sent-bpe-maxratio2, and format it as input
for word2word-char30.

The accuracy of our best pipeline segmatiser is 92.46 % .

We discuss the pros and cons of pipeline Japanese segmatisers based on obser-
vation. First, the separate fine-tuning for both tasks is time-consuming. We attempt
with twenty-one (word2word) + two (sent2sent) lemmatisers and two (sent2sent)
segmentisers experimented with two approaches to improve length matching. Sec-
ond, as the same data is used for training lemmatisers and segmentisers in parallel, we
would certainly prefer simultaneous training if possible, as long as the performance
is not worsened. On the other hand, pipeline segmentisers could work even better if
a large amount of annotated data for either task was prepared. For example, for the

segmentisers, we can make use of segmented text from other corpora.

4.3.3 sent2sent segmatisers

There are two sent2sent segmatiser variants, char and bpe. Their performance is
evaluated by F1 score. From Table .9 both segmatisers achieve an F1 score as high
as around 0.92. The tiny gap between them might be explained by the same hypothesis
about the lexicon overlap we have been repeating. Besides, bpe segmatiser has the
benefits from the byte pairs which provide ready answers for segmentation as discussed
in Section but it lacks the flexibility that char has.

We also check the length mismatch problem here (Table char-maxratio2 and
bpe-maxratio2 with length constraints included). The segmatisers get wrong lengths
for almost half of the sentences; putting length constraints is only slightly helpful.

Some types of segmentation mistakes by joint segmatisers are as follows. First,

4.3. Segmatisers 35

Model F1 Encoder lexicon size Overlapping vocabulary
char 0.9208 2818
bpe 09198 3278

2818

Table 4.9: The sent2sent segmatisers: F1 score on UD_Japanese test set and encoder

lexicon statistics. The two models achieve close scores as their lexica share a lot of

entries.
Model F1 Mismatch error rate Mismatch unit count
char 0.9208 45.88% 467
char-maxratio2 0.9218 45.52% 372
bpe 09174 45.52% 409
bpe-maxratio2 (0.9198 45.88% 384

Table 4.10: Length mismatch error rate and mismatch unit count for sent2sent segma-
tisers. Adding output length constraints works for both models, regarding mismatch unit

count.

they are bad at segmenting/recognising long words (characters/byte pairs which make
up a long word), and tend to break them into units and lemmatise them correspond-
ingly. Some examples are (the 1st line: the un-segmented text; the 2nd line: the ref-
erence segmatised output; the 3rd line: the actual segmatised output; the 4th line: the

corresponding segmentation inferred from the segmatisation):

1| LATOHRWN MWL ED 7
2| EATHL W MWL Eozeis
3| A 2w | HlE oz
4| LA T B ww [HlE o zEm

Meanwhile, they also tend to combine adjacent words into a long word. And the
elements are mostly written in the same character type. For example (the 1st line:
un-segmented text; the 2nd line: the reference segmatised output; the 3rd line: the
actual segmatised output; the 4th line: the corresponding segmentation inferred from

the segmatisation):

36 Chapter 4. Results and Discussion

1| 2vkEG | A+ A% 3 LHAAELD
2| 2 K| A+ HAxra | 3BH5A FLD
3| 20k 1T AxL O IHAHAELD
4| Ykt 1T AxL O IHAHAELD
character type kanji katakana hiragana

4.3.4 The better segmatiser

To remind the readers of the best pipeline and joint segmatiser, we compare them
regarding F1 score in Table d.T1]

Model F1

pipeline: sent2sent-bpe-maxratio2 + word2word-char30 0.9246

joint: sent2sent-char-maxratio2 0.9218

Table 4.11: F1 score of the pipeline segmatiser vs. the joint segmatiser. The joint

model is not worse than the pipeline model a lot.

From the F1 scores, the pipeline segmatiser seems more preferred. However, it
only surpasses the joint segmatiser by tiny 0.0028. Given perfect segmentation, the
lemmatiser word2word-char30, part of the pipeline model, can lemmatise 98.99%
of the test tokens correctly. In contrast, when given the segmentation results from
sent2sent-bpe-maxratio2 segmentiser, which has a high length mismatch error rate
44.98% and an F1 score of 0.9270, the performance of the pipeline segmatiser is
largely adversely influenced by the performance of the segmentiser.

Regarding segmentation, the performance of the pipeline segmatiser is informed
by F1 score, but the performance of the joint segmatiser cannot be directly measured,
even though the F1 score implicitly indicates it to some extent. Another fair yet imper-
fect metric is length mismatch error rate/unit counts. The error rate of sent2sent-bpe-
maxratio2 segmentiser is 44.98% (364 units), and sent2sent-char-maxratio2 seg-
matiser 45.52% (372 units). It seems that overall, jointly learning segmentation and
lemmatisation is not helping too much to eliminate length mismatch.

One thing we have noticed from the pipeline segmatiser is, once the segmentiser
has made any mistakes, it is impossible for the lemmatiser to correct them. This is
understandable because for each word, the lemmatiser must always output a lemma.
Unlike the pipeline segmatiser, we expect to see segmentation and lemmatisation facil-

itating each other in the joint segmatiser: segmentation is improved as lemmatisation

4.3. Segmatisers 37

helps decide word boundaries; lemmatisation can be helped by segmentation accu-
rately segmenting units that can be encoded as useful context. However, we witness
the failure of even outputting incorrect characters in the joint segmatiser, such as some
names containing infrequent kanjlﬂ Infrequent characters are not even blindly copied
and pasted, but this is not a problem as serious to the standalone segmentiser as to the
joint segmatiser. For infrequent characters, the pipeline segmatiser is more likely to
get them correct. However, neither segmatisers are able to handle unseen characters.
This is hard to imagine in languages such as English, as the character lexicon is usually
small and finite - whatever new words are made up, they must be constituted by the
known characters. But the Japanese character lexicon is unable to cover all possible
character based on a corpus with a very limited coverage of characters, let alone the

more infrequent ones.

’the joint segmatiser could not handle names such as {7)I| 1553 which contains infrequent character
44, and instead alters the string as 7)1/ %'|55; the same phenomenon is seen in other types of words as
well

3besides the finite set of hiragana and katakana, there is a much larger vocabulary of kanji, con-
tributing to the explosion of the character lexicon size

Chapter 5
Conclusion

We apply seq2seq models on Japanese lemmatisation, segmentation, and segmatisa-

tion. Our answers to the three questions in Section[I.2]are:

1. We extend neural lemmatisation to Japanese. Among all lemmatiser variants,
the one encoding context of 30 characters from both sides performs the best.
Although context-aware lemmatisers all work better than the context-free lem-

matiser, it remains unknown whether context is the key factor.

2. By modelling word segmentation as predicting the probabilities of word breaks
in a sequence of characters, we succeed in constructing seg2seq Japanese seg-
mentisers. Our segmentiser which uses byte pairs as basic unit and has output
length constraints performs the best. However, segmentation turns out to be
more challenging than lemmatisation for Japanese: the latter has hard alignment
between the words and the lemmas; while the former faces complicated Japanese

writing system and large-sized lexica.

3. Neural pipeline analysers outperform joint end-to-end analysers. However, pipeline
models still suffer from high time cost of separate optimisation; and joint models
are only short of the pipeline counterparts by a little bit. There is weak evidence
that segmentation and lemmatisation can facilitate each other in joint models,
and it is almost impossible for the lemmatiser to correct incorrect segmentation
in pipeline models. When there is not enough training data for both tasks or
enough time for separate fine-tuning, we prefer joint models as they are more

efficient.

39

40 Chapter 5. Conclusion
5.1 Limitations

5.1.1 Data

The corpus we use is not a popular choice, so it is hard to compare our work with the
others directlyﬂ If we had the opportunity to work with another corpus, we could have
been able to test the robustness of our analysers. After all, solving a problem does not
equal to achieving state-of-the-art on specific corpora (Lipton and Steinhardt, 2018).
We hope our proposal of joint seqg2seq Japanese segmentation and lemmatisation could

achieve satisfying results on the mainstream corpora as well.

5.1.2 Sub-word units

Byte pair is an important sub-word unit in our models. We experiment with BPE as
it improves the performance of NMT on morphologically complex German (Sennrich
et al., | 2015). However, BPE is not the panacea to every language. It is inappropriate
for Japanese as Japanese has completely different features from languages such as
German: short morphemes, large-sized character lexica, tons of unseencharacters, etc.
500 times of merging operation is still too many for Japanese. The results of BPE
models are very close to those of the character-level models. In future studies, we
would not experiment with BPE anymore and would not recommend using it on similar

languages such as Chinese.

5.2 Future work

To test the robustness of our models, we would like to repeat the experiments on at
least one of the mainstream corpora, The Balanced Corpus of Contemporary Written
Japanese (Maekawa, [2007) (Maekawa et al., 2014), used by various previous studies
on Japanese morphology (Neubig et al., 2011) (Yamamoto et al.,|2015) (Uchiumi et al.,
20135). In addition to Japanese, it would be interesting to see how our works could be
transferred to Korean, which shares almost the same language topology with Japanese,
but with a less complicated writing system.

The most interesting and challenging task we find is Japanese segmentation. Based

on the error analysis of our segmentisers, we propose to include the character type

Ibut this is the only free corpus we could use when starting this dissertation

5.2. Future work 41

information, as words with the same character type are much more likely to be in one
word.

Even though seg2seq does show the power of neural models on traditional NLP
tasks, we do not deny the effectiveness of the existing Japanese morphological anal-
ysers. As long as the dictionaries they are equipped with are open and updated, the

performance of the analysers should not be worsened.

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Bergmanis, T. and Goldwater, S. (2018). Context sensitive neural lemmatization with
lematus. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), volume 1, pages 1391-1400.

Cho, K., Van Merriénboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the prop-
erties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014b). Learning phrase representations using rnn encoder-decoder

for statistical machine translation. arXiv preprint arXiv:1406.1078.

Fraser, A., Weller, M., Cahill, A., and Cap, F. (2012). Modeling inflection and word-
formation in smt. In Proceedings of the 13th Conference of the European Chapter
of the Association for Computational Linguistics, pages 664—674. Association for

Computational Linguistics.

Gage, P. (1994). A new algorithm for data compression. The C Users Journal,
12(2):23-38.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8):1735-1780.

Jiang, W., Huang, L., Liu, Q., and Li, Y. (2008). A cascaded linear model for joint
chinese word segmentation and part-of-speech tagging. Proceedings of ACL-08:
HLT, pages 897-904.

43

44 Bibliography

Kruengkrai, C., Uchimoto, K., Kazama, J., Wang, Y., Torisawa, K., and Isahara, H.
(2009). An error-driven word-character hybrid model for joint chinese word seg-
mentation and pos tagging. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1-Volume 1, pages 513-521. Associa-

tion for Computational Linguistics.

Kudo, T., Yamamoto, K., and Matsumoto, Y. (2004). Applying conditional random
fields to japanese morphological analysis. In Proceedings of the 2004 conference on

empirical methods in natural language processing.

Kurohashi, A. T. S. (2018). Juman++ v2: A practical and modern morphological

analyzer.

Kurohashi, S. and Nagao, M. (1998). Building a japanese parsed corpus while im-
proving the parsing system. In Proceedings of The Ist International Conference on

Language Resources & Evaluation, pages 719-724.

Kurohashi, S. and Nagao, M. (2003). Building a japanese parsed corpus. In Treebanks,
pages 249-260. Springer.

Lipton, Z. C. and Steinhardt, J. (2018). Troubling trends in machine learning scholar-
ship. arXiv preprint arXiv:1807.03341.

Ma, X. and Hovy, E. (2016). End-to-end sequence labeling via bi-directional 1stm-
cnns-crf. arXiv preprint arXiv:1603.01354.

Maekawa, K. (2007). Kotonoha and bccwj: development of a balanced corpus of
contemporary written japanese. In Corpora and Language Research: Proceedings
of the First International Conference on Korean Language, Literature, and Culture,
pages 158-177.

Maekawa, K., Yamazaki, M., Ogiso, T., Maruyama, T., Ogura, H., Kashino, W., Koiso,
H., Yamaguchi, M., Tanaka, M., and Den, Y. (2014). Balanced corpus of contempo-

rary written japanese. Language resources and evaluation, 48(2):345-371.

Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Matsuda, H., Takaoka, K., and
Asahara, M. (2000). Morphological analysis system chasen version 2.2. 1 manual.

Nara Institute of Science and Technology.

Bibliography 45

Mikolov, T., Karafiit, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010). Recur-
rent neural network based language model. In Eleventh Annual Conference of the

International Speech Communication Association.

Morita, H., Kawahara, D., and Kurohashi, S. (2015). Morphological analysis for un-
segmented languages using recurrent neural network language model. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 2292-2297.

Neubig, G., Nakata, Y., and Mori, S. (2011). Pointwise prediction for robust, adaptable
japanese morphological analysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies: short

papers-Volume 2, pages 529-533. Association for Computational Linguistics.

Plank, B., Sggaard, A., and Goldberg, Y. (2016). Multilingual part-of-speech tagging
with bidirectional long short-term memory models and auxiliary loss. arXiv preprint
arXiv:1604.05529.

Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J., Junczys-
Dowmunt, M., Laubli, S., Barone, A. V. M., Mokry, J., et al. (2017). Nematus:

a toolkit for neural machine translation. arXiv preprint arXiv:1703.04357.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare

words with subword units. arXiv preprint arXiv:1508.07909.

Shao, Y., Hardmeier, C., Tiedemann, J., and Nivre, J. (2017). Character-based joint
segmentation and pos tagging for chinese using bidirectional rnn-crf. arXiv preprint
arXiv:1704.01314.

Sun, W. (2011). A stacked sub-word model for joint chinese word segmentation and
part-of-speech tagging. In Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies-Volume 1,

pages 1385-1394. Association for Computational Linguistics.

Sutskever, 1., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages

3104-3112.

Uchiumi, K., Tsukahara, H., and Mochihashi, D. (2015). Inducing word and part-of-

speech with pitman-yor hidden semi-markov models. In Proceedings of the 53rd

46 Bibliography

Annual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (Volume 1: Long

Papers), volume 1, pages 1774—1782.

Vania, C. and Lopez, A. (2017). From characters to words to in between: Do we

capture morphology? arXiv preprint arXiv:1704.08352.

Wang, Y., Kazama, J., Tsuruoka, Y., Chen, W., Zhang, Y., and Torisawa, K. (2011). Im-
proving chinese word segmentation and pos tagging with semi-supervised methods
using large auto-analyzed data. In Proceedings of Sth International Joint Conference

on Natural Language Processing, pages 309-317.

Yamamoto, K., Miyanishi, Y., Takahashi, K., Inomata, Y., Mikami, Y., and Sudo, Y.
(2015). What we need is word, not morpheme; constructing word analyzer for
japanese. In Asian Language Processing (IALP), 2015 International Conference on,

pages 49-52. IEEE.

Zhang, X., Cheng, J., and Lapata, M. (2016). Dependency parsing as head selection.
arXiv preprint arXiv:1606.01280.

Appendix A

Extra examples

A.1 An example of Japanese sentence

In normal Japanese writing, the three character types (sometimes romaji, equal to Ro-
man character, and Arabic numbers are also witnessed) can appear in the same sen-
tence. Table shows an example of a Japanese sentence randomly selected from the

Inteme with annotation of different character types.

KD GMSFIZITHA)IGBIE . i FEE O ZHACRICEA TV X
T, (T —==2—2X)

R kanji 2 hiragana B kanji 5 alphanum] kanji I hiragana 11 alphanum
HH)kanji 3 alphanum RFBLLE kanji~

e R kanji 2 hiragana i kanji = hiragana AL kanji I hiragana iz
kanji ATVWET hiragana ° (7 2% —==2—2) rarakana

(“Since 3 a.m. on 11th, the 5th large-scale typhoon of this year has been moving off

the Northease east of the Kii Peninsula. (Weather News)”)

Table A.1: An example of Japanese sentence containing kanji, hiragana, katakana, and

alphanum (with annotation and translation in English).

"Yahoo Japan News KO G55 N KEOHZEBAAAZ BRICKRDIIT IS DIF&
IZ https://news.yahoo.co.jp/pickup/6285732 retrieval date: 10/June/2018

47

48 Appendix A. Extra examples

A.2 Inconsistency of IPAdic and Jumandic in Section
4.2.1]

There are four main types of inconsistency in segmentation and the resultant inconsis-
tency in lemmatisation between IPAdic and Jumandic (examples in Table [A.2)). First,
they deal with inflected verbs in different ways: IPAdic tends to split the stem and
the inflectional suffix but Jumandic does not. Second, for nouns with prefixes, [PAdic
treats them as a word but Jumandic separates the prefixes from the noun. Third, a
compound preposition consisting of a preposition and a verb is split by Jumandic but
not by IPAdic. Fourth, IPAdic segments adjectival verbﬂ with preposition into two
parts; while Jumandic does not perform. These differences in segmentation lead to
divergence in lemmatisation, as the number of units to be lemmatised are different.
However, it remains unknown how much of the segmentation or lemmatisation by the
baselines is effected by using different dictionaries; to figure it out, a great amount of
manual correction and inspection is necessary, which is impossible to be carried out in

this dissertation.

Category Example Seg & Lem IPAdic Jumandic
seg RV-> T FEKI-T
lem Ryo b KIO

Inflected verbs 5T

. seg B B i
Prefixed nouns Bi . .
lem BE B A
. . seg I2OWTT 12 DWW
Combined preposition [Z DT
lem I2DOWTT Iz oK
Adjectival verbs seg HHS s 12 HAS hIS
+ 5 Hic . L
preposition lem i & el S 072

Table A.2: Examples of inconsistency in segmentation and lemmatisation between

IPAdic and Jumandic (seg: segmentation; lem: lemmatisation).

Zadjectival verbs, fZ %], are verbs which can be used as if they were adjectives; they become
adverb-like when appended with prepositions

A.3. The superiority of JUMAN++ over JUMAN 49

A.3 The superiority of JUMAN++ over JUMAN

JUMAN-++ is especially better at handling the following types of words: short nouns,
names, and words written in the same character type.

For instance, while JUMAN segments JF{7 & 4 AP (political parties and Shiba
Ing’) into 58 & Z& K (political parties and firewood dog), JUMAN++ can
correctly segment it into %& & 45K (political parties and Shiba Inu). See more

ambiguous examples in Table |A.3

Example Output
. i JUMAN: * i5d & %5 K (political parties and firewood dog)
(MR SN . o . :
JUMAN++: 5d & 85K (political parties and Shiba Inu)
. JUMAN: * /\fk & 3£ (family name + split first name)
IR AT .
JUMAN++: /MK &5 (family name + first name)
JUMAN: * {& T I (Bridge down governor)
i MR .
JUMAN++: /5 T J1% (Hashimoto governor)
o JUMAN: * 555¢ B % DIK (inferior state-owned history since)
HEEFRDLK

JUMAN++: %555 B H% DK (inferior country history since)

*odn W o Kun Nk
2L BNy JUMAN: (cannot make and warehouse could)
2K BN 2K N W oK -
JUMAN++: (cannot be made or be made)

Table A.3: JUMAN vs. JUMAN++: Segmentation of ambiguous cases.

3the original sentence was: JF(%d & SR ZEIMICIK D LW I DY L TT
4Shiba Inu or £E°K;, a type of dog, literally means firewood and dog

Appendix B

Plots

B.1 Attention maps for Section

<w> A

<Jw> A

Figure B.1: Attention map for an incorrectly lemmtised example L -> 9% by chars5.
Most attention of the decoder side is given to the centre word of the encoder side.

Attention given to the rest of the sentence is negligible.

51

[6)]
N

Appendix B. Plots

7 a . &
DE'\)_'\C'&?{/O;‘PL‘; 2K NS GHERE S LEGE TSR N
|

N
|

-t #H & L P S e A T N At S S PP LS DS g Jlg\f;’.(o@\f;\{,_‘; -5
i % G (d
1

&
)

- o

<w> A
W A

Figure B.2: Attention map for a correctly lemmtised example L -> 3 % by char30.
Most attention of the decoder side is given to the centre word of the encoder side.
Attention given to the rest of the sentence is negligible, even though the model outputs

the correct word.

Appendix C

Hyper-parameter tuning

C.1 Hyper-parameters

Hyper-parameter Meaning word2word sent2sent

dim_word word embeddings dimension 300 300
dim hidden layer dimension 00 100
batchsize batchsize 60 60
Coptimizer optimiser ~ adadelta adadelta
‘maxlen maximum length of sentences 150 150

normalising weights
weight_normalisation of each hidden layer True True

batch normalisation;
normalising the output of

layer_normalisation a previous activation layer False True
randomly drop out nodes
use_dropout in hidden layers True True
the ratio of nodes
dropout_ratio being dropped out 0.2 0.2
enc_depth number of encoder layers
dec_depth number of decoder layers
77777777777777777777 make this number of encoder
enc_depth bidirectional layers bidirectional 0 2

steps of waiting for updates
patience in validation loss 10 10

Table C.1: Hyperparameters for the lemmatisers

53

54 Appendix C. Hyper-parameter tuning

Hyper-parameter Meaning sent2sent
dim_word word embeddings dimension 512
‘4im hidden layer dimension 256
‘batch.size batchsize 60
Coptimizer optimiser adadelta
‘maxlen maximum length of sentences 150

normalising weights
weight normalisation of each hidden layer True

batch normalisation;
normalising the output of

layer normalisation a previous activation layer True
randomly drop out nodes
use_dropout in hidden layers True
the ratio of nodes
dropout _ratio being dropped out 0.2
enc_depth number of encoder layers 2
dec_depth number of decoder layers 2
77777777777777777777 make this number of encoder layers
enc_depth_ bidirectional bidirectional 2

steps of waiting for updates
patience in validation loss 10

Table C.2: Hyperparameters for the segmentisers

C.1. Hyper-parameters

55

Hyper-parameter Meaning sent2sent

dim_word word embeddings dimension 512

dim hidden layer dimension 256

batch_size batch size 60

optimizer optimiser adadelta

maxlen maximum length of sentences 150
normalising weights

weight _normalisation of each hidden layer True
batch normalisation;
normalising the output of

layer normalisation a previous activation layer True
randomly drop out nodes

use_dropout in hidden layers True
the ratio of nodes

dropout _ratio being dropped out 0.2

enc_depth number of encoder layers 3

dec_depth number of decoder layers 3

77777777777777777777 make this number of encoder Tayers

enc_depth_bidirectional bidirectional 3
steps of waiting for updates

patience in validation loss 10

Table C.3: Hyperparameters for the joint segmatisers

	Introduction
	Motivation
	Objective
	Contributions

	Related Studies
	Japanese morphological analysis
	Sequence to sequence neural networks with attention
	Sequence to sequence morphological analysis

	Experimental Design
	Data
	Corpora and pre-processing
	Statistics
	Basic units

	Models
	Lemmatisation models
	Segmentation models
	Segmatisation models: segmentation & lemmatisation models
	Baseline models

	Training
	Framework
	Hyper-parameters

	Evaluation
	Accuracy: token-level
	F1 score: sentence-level

	Results and Discussion
	Lemmatisers
	word2word lemmatisers
	sent2sent lemmatisers
	The best lemmatiser

	Segmentisers
	sent2sent segmentisers
	The best segmentiser

	Segmatisers
	Baseline segmatisers
	Pipeline segmatisers
	sent2sent segmatisers
	The better segmatiser

	Conclusion
	Limitations
	Data
	Sub-word units

	Future work

	Bibliography
	Extra examples
	An example of Japanese sentence
	Inconsistency of IPAdic and Jumandic in Section 4.2.1
	The superiority of JUMAN++ over JUMAN

	Plots
	Attention maps for Section 4.1.1

	Hyper-parameter tuning
	Hyper-parameters

