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Abstract—Unit selection is a conventional yet practical method
of speech synthesis (SS). The basic idea is to concatenate pre-
recorded units. The selection of units is based on the principle
of choosing from candidate units that constitute an utterance
which could minimise its overall gap or mismatch with the target
utterance, in terms of various phonetic and prosodic features.
Despite the simplicity of this idea, the actual realisation has to
take into account a lot of factors that could influence the outcome.
The factors include but are not limited to, the size and the domain
of recording database, the costs which measures how close the
candidate units are to the target utterance, etc. In this report,
we will see whether and how unit selection is sensitive to various
design choices. We hope to be inspired by the results thus able
to design unit selection system in a more robust way.

Index Terms—speech synthesis, unit selection, design choices.

I. INTRODUCTION

UNIT selection is a method of synthesising speech by
concatenating pre-recorded units selected according to

some constraints. These constraints require the linguistic dis-
tance between candidate units and target units to be as short as
possible, and the acoustic differences between adjacent units
to be as small as possible.

Unit selection [1] was proposed more than two decades ago.
Since then, Statistical Parametric Speech Synthesis (SPSS)
and Deep Neural Network Speech Synthesis (DNN-SS), have
been applied and showing satisfactory outcome. Despite of
that, it is still meaningful to optimise unit selection. Com-
pared to its successors yet competitors, it can produce more
natural speech, given a high quality database and well-tuned
parameters (details in Section II). Unlike SPSS and DNN-SS,
which generate speech sound from parameters, unit selection
can at least guarantee the units are from real voice without
parameterisation and re-generation. However, unit selection
systems are sensitive to design choices. Tiny changes in any
step could lead to big differences eventually. We will cover
some design choices of our most interest, and observe their
impacts by experiments and evaluation. The unit selection
system we use is Festival1.

II. UNIT SELECTION

A. Data preparation

The first thing to prepare is recording scripts. Scripts may
vary in content(genre/domain), years, size, unit diversity, etc.

Choosing the first two aspects depends on the type of
system. For example, if a system is to be used for synthesising
weather forecast, we would prefer scripts of past weather

1http://www.festvox.org/docs/manual-2.4.0/festival toc.html Festival 2.4.0
Manual retrieval date: 04/04/2018

forecast rather than random text scrapped from the Internet,
since it is more likely for past weather forecast scripts to
include frequently-used weather forecast expressions which
the system can use the recording of them as a whole, e.g.
cloudy with rain at times. The advantage of using domain-
specific scripts will be explained again in Section II-F, using
the terminology join cost. The year of the scripts is vital too.
If the system is to synthesis modern language, archaic scripts
are not wise choices. They contain old-fashioned vocabulary
and pronunciation which are no longer used in modern days.
They pose challenges to voice talents, i.e. people who read
the scripts. Their reading might be impeded by the archaic
words, thus resulting in unnatural prosody or longer recording
time. In addition, speech corpora are preferred than written
text as they come from natural speech; written text is harder
for reading out.

Script size means how many sentences, words, or smaller
units, e.g. phones or diphones, are contained. A larger size
does not necessarily guarantee better synthesis outcome. There
is a trade-off between the size and the recording time. Longer
recording time causes voice talents tired. If split into several
recording sessions, the consistency of recording is hard to
ensure. Simply increasing the size is crude and hasty. It is
wiser to promote the diversity of the scripts at the same time.
As concatenation happens at diphone2 level, we define the
diversity as the number of diphone types in the script versus
the total amount of diphones.

We hope the script could cover as many diphone types
as possible, while striking a balance between the diversity
and the size (type:token). When selecting diphones to join,
we need to consider context as well, including phonetic
context (the preceding and following sounds), prosodic en-
vironment (stress, prosody) and position (in the syllable, word
or sentence). A perfect match between a candidate unit and
a target unit would be matching the diphone type and the
context (more explanation using terminology target cost in
Section II-F). However, that is almost impossible for lots
of diphone types. Meanwhile, a missing diphone type could
result in a large number of missing context-dependent diphone
types. According to Zipf’s Law [2], the natural distribution of
diphones has a very long tail, i.e. many of them have extremely
low frequency or are never unseen. This is also known as
data sparsity or the phenomenon of Large Number of Rare
Events [3]. Thus, we need a wise test selection algorithm

2A diphone expands from the second half of the first phone to the first half
of the second phone. For example, sil k, k a, a t, are the diphones of cat
(sil means silence); a more fine-grained version would be: sil k, k a, a t cl,
t cl t where t cl means the closure part of t. As both sides of a diphone have
constant acoustic properties, they are ideal units for waveform concatenation.
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(TSA) to ensure a larger type:token and a flatter diphone
distribution (Section III-A).

B. Recording

The consistency of recording is vital. First, the recording
devices and settings should be the same for every recording
session. Hopefully, the recording could be completed in a
single pass or as few times as possible. Even for the latter case,
always recording within the same time period in a day could
compensate for splitting recording to some extent. Besides, the
average length of sentences should be controlled, ideally 5 to
15 words. Sentences too long increase the difficulty of being
read out naturally. Voice talents should keep calm, use natural
voice, and stick to a specific accent (Section II-C). Breaks
should be taken appropriately.

After recording, sanity check should be done on all the
recordings and the transcript. Any mismatch between them
should be fixed, as preparation for labelling (Section II-D).

C. Dictionary selection

In Festival, three dictionaries are available:
• unilex-gam-General American English
• unilex-rpx-British English
• unilex-edi-Scottish English (Edinburgh)

Dictionaries determine the phone set to use. A phone set
contains a set of symbols which are defined with features such
as vowel/consonant, frontness of vowels, articulation place
of consonants, etc. There are 78 phones in unilex-gam
and unilex-edi while 60 in unilex-rpx. Besides, as
some vowels are often reduced to schwa in natural utterance,
there are rules of phone substitution. There are more vowels
reduced to schwa in unilex-gam and unilex-edi than
in unilex-rpx.

Dictionaries are used in labelling and alignment (Section
II-D), and voice building (Section II-F). Choosing a proper
dictionary and using it all the time is important. Otherwise,
the inconsistency is problematic. For example, if we use
unilex-gam to build voice on an RP recording database,
it will cause a lot of missing diphone problems, as there are
more phones in unilex-gam than in unilex-rpx.

D. Labelling and Alignment

To align the recordings with the transcript, we convert
word sequences into phone sequences, by looking up words
in the lexicon (the same dictionary in Section II-C). Then,
we align the waveform with the phones, i.e. adding time-
stamps to the phones. There are two ways of doing that:
hand labelling and automatic labelling [4]. Hand labelling
relies on either annotators’ built-in knowledge or rules. It
could be time-consuming, laborious and error-prone. Auto-
matic labelling could solve most of the problems. Borrow-
ing the idea of forced alignment from Automatic Speech
Recognition (ASR), we treat labelling and alignment as
training the Hidden-Markov-Model-Gaussian-Mixture-Model-
Acoustic-Models (HMM-GMM-AMs) in ASR.

Waveforms are represented by Mel-frequency cepstral
coefficients (MFCCs) [5]. MFCCs are better than spectral
coefficients because modelling correlated spectral coefficients
requires more parameters and computation. Uncorrelated
cepstral coefficients are suitable for modelling statistical
GMMs. Besides the first 13 coefficients we normally use
which are representative of the filter, we can add delta (13
dimensions) or delta-delta (13 dimensions) features which
model the velocity and acceleration of changes between two
adjacent frames. In the experiments onwards, we will be
consistent in using 39-dimension MFCCs. MFCC extraction is
done by make_mfccs from Hidden Markov Model Toolkit
(HTK)3.

We then use MFCCs to train HMM-GMM-phone-level-
AMs, allowing optional short pause between phones4 and
phone reduction rules [6]. In do_alignment in HTK,
variance floor is computed by HCompV to prevent the variance
from a single speaker being too small [7]. Each HMM has five
states, two of which are non-emission. To train AMs, Baum-
Welch (HERest) and Viterbi (HVite) algorithm are applied.
Both align feature sequences to HMM state sequences.

Viterbi and Baum-Welch are each carried out for several
rounds in do_alignment, to ensure correct labelling. Dur-
ing alignment, the number of GMMs are gradually increased
for better acoustic modelling. However, too many GMMs
might lead to overfitting, worsening the alignment. Besides,
too many emission states in HMMs could lead to similar
outcome. In ASR, we can keep an eye on the likelihood
of training data and the word/phone error rate (WER/PER)
to avoid overfitting or underfitting. When the training data
likelihood becomes too large or the WER/PER goes higher
after some point, we should be cautious about overfitting. In
our case, as we are not doing speech recognition, we do not
have WER/PER; the training data likelihood could be checked
in aligned.*.mlf.

Building a single-voice SS system is the same as training
a speaker-dependent ASR system, where the training data is
single-speaker. The amount of data for our baseline is 593
sentences, including 27658 phones5. We conjecture, more data,
essentially meaning speaker-independent AMs, would result in
better alignment (Section III-C).

After forced alignment, each phone have a starting and an
ending timestamp. Mismatch might cause improper choices of
units.

E. Signal processing

Each phone in the database needs to be pitchmarked -
finding epochs. Pitchmarking is for waveform concatenation,
realised by Time-Domain Pitch Synchronous Overlap Add
(TD-PSOLA) in Festival. Concatenation at epochs can eli-
minate unnaturalness and audible artefacts. The peak in each
epoch is detected by finding the zero crossings of the derivative
of the signal, as the derivative of the highest point must be

3http://htk.eng.cam.ac.uk HTK retrieval date: 07/04/2018
4represented by the special phone symbol sp
5the special phone sil indicating silence excluded
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zero. Having marked the peaks, we can detect the epochs
which are periods in between every two adjacent peaks.

The second step is pitchtracking - F0 estimation. The F0
track across the waveform is approximated by a window
spanning through several epochs of the signal. A window sized
too small would increase the probability of local errors if pitch-
marking, as prerequisite, is accidentally wrongly marked. As
speech signal normally can stay stable across several periods,
we consider a window sized several periods (at least twice the
longest expected period) would be a sweet spot. A common
pitch determination algorithm is cross-correlation [8] [9]. It
sums up the multiplication of the sample at time t and the
sample at time t + τ (1), where τ is the lag, m the starting
sample, n the number of samples in the frame of time length
τ .

χ = Σm+n−1
t=m stst+τ (1)

The bigger the χ is, the more the signals at time t and t+ τ
are overlapping. The pitch period is found as the smallest lag
(τ > 0) among all values that we could obtain local maxima of
χ. Furthermore, normalised cross-correlation function (NCCF)
improves cross-correlation and is put into practice as a Robust
Algorithm for Pitch Tracking [9].

Besides, pre-processing and post-processing are also nece-
ssary in pitchtracking. In pre-processing, low-passing filtering,
waveform downsampling and spectral flattening by inverse
filtering [10] remove interfering signal components: noise, un-
voiced sounds, formants, etc. [9], and reduce computation. In
post-processing, Dynamic Programming (DP) selects between
candidate tracks resulted from lags of multiple pitch periods.
DP draws the best route among F0 candidates which has the
lowest overall cost of moving from one to another.

The predicted range of F0 is an important parameter in
signal processing. Normally, male has lower F0. F0 differs
within the same gender too. We must ensure correct estimation
of the speaker’s maximal and minimal F0. A narrow range
improves the precision of pitchmarking and saves computation
in pitchtracking.

In Festival, running make_pm_wave and make_f0 (with
gender-specific F0 range specified, low-passing filtering -L
and DP -P)6, we obtain epoch and F0. Both are important
signal parameters for voice building.

F. Voice building

Two core factors in voice building are target cost and join
cost. Target cost determines how close the candidate is to the
target. Join cost defines how likely two adjacent units can be
perfect combination without audible joins. For a perfect match,
the cost should be zero. The computation of the costs are based
on mismatch between the features of candidates and targets,
or adjacent candidates. The target mismatch is formulated by
Independent Feature Formulation (IFF) [1] or Acoustic Space
Formulation (ASF) [4]. IFF considers only linguistic features,
e.g. phonetic context, stress, position, etc. Each unit in the

6http://www.cstr.ed.ac.uk/projects/speech tools/manual-1.2.0/x2152.htm
Manual of program pda used by make_f0 in Festival retrieval date:
08/04/2018

database is attached linguistic features of concern. However,
units with different linguistic features could sound similar
to listeners7. That is why we introduce ASF, which uses
acoustic properties to compare how units sound. Acoustic
properties include F0, duration and energy, or even more, as
long as they are accurately predicted from linguistic features;
if not, reduce them. The prediction can be done by regression
trees asking questions about linguistic features, i.e. context-
dependent clustering, or by neural networks. ASF overcomes
some limitations of IFF. It does not make independence
assumptions on features, and avoids data sparsity.

In practice, IFF and ASF can be hybrid. The target cost
is computed as the weighted sum of differences in features
between candidates and targets. The candidates with the lowest
target costs are more likely to be kept.

Join cost tells how well two units join together by a
weighted sum of sub-costs. The sub-costs are calculated from
F0 contours, spectra, energy, etc. While it is hard for target
cost to be zero, join cost could be zero when the adjacent units
are consecutive units in the database, as the concatenation is
natural and perfect. Back to the example of weather forecast
database (Section II-A), the reason why we prefer domain-
specific database when building a domain-specific voice is
exactly because we can expect more zero join costs from
frequently-used words, phrases or even clauses in a specific
domain. We have an experiment to justify this hypothesis in
Section III-B.

To search for the best candidates, we construct a lattice
with the target units sequence at the top, below each listed
corresponding candidates attached with target costs and bila-
teral join costs. The search algorithm is Viterbi, essentially
DP. By default, all the candidates are displayed. Pruning
reduces the number of them by removing candidates with costs
larger than the beam width. In Festival, observation pruning
is implemented before searching, removing candidates with
target costs greater than the beam width. Although it does
speed up the search, it suffers the risk of removing the units
which later might result in a lower overall cost. Search pruning
removes candidates whose target cost and join cost so far
are larger than the beam width. Viterbi guarantees a single
best path through the candidates with the lowest overall cost.
But making the beam size too narrow could cause less exact
searching.

Having the units to be concatenated, we concatenate their
waveforms together. Waveforms could be saved as parame-
ters, such as Residual-excited Linear Prediction Coefficients
(RELPC) in Festival.

III. EXPERIMENTAL DESIGN AND EVALUATION

We focus on the design choices of most interest and of
a wider range, including the property of recording database,
forced alignment, and target/join costs.

7For instance, suppose the closure part of different unvoiced stops sound
similar to each other, hence the target cost between t_cl and p_cl should
be zero. But as defined by IFF, they can never be perfectly matched.
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Baseline system

In our baseline, we recorded the A set from CMU Arctic
corpus8. It contains sentences from Jack London’s work in the
early 20th century. It is phonetically well balanced with a good
diphone coverage with a minimal amount of text [11]. Some
original statistics about A set are reported in [11]. However,
recomputation is necessary. First, the phone set they used is
different from ours. Second, the formula of diphone coverage
computation was not revealed. Third, when defining diphone
coverage, they failed to specify what text they refer to in
“minimal amount of text”. Word-based text and phone-based
text make a big difference to the computation. For consistency,
we use the phone set of unilex-rpx. We define diphone
coverage as the number of diphone types covered by the
script over the total number of diphone types9. We run A
set through Festival front-end, and report the recomputation
results in Table I.

TABLE I
RECOMPUTED (NUMBERS IN BOLD) STATISTICS OF ARCTIC A SET BASED

ON [11])

Number of units Coverage
Sentence Word Unique word Phone Phoneme Diphone

593 5284 1958 29316 100.00% 29.67%

The recording was done under studio conditions and fi-
nished in two times, both within 9 a.m. to 11 a.m. The
voice talent recorded with normal and consistent voice, with
appropriate breaks. Sanity check was done thoroughly. The
recordings were downsampled to 16000 Hz.

A. Text selection: diphone coverage

Hypothesis Higher diphone coverage could improve the
synthesis outcome by reducing the number of unseen diphone
types.

Simply increasing the data size is not always helpful
according to Zipf’s Law; the diversity of units - diphone
coverage, matters more.

Experiment design
To compare with the baseline, we built a new system using

the recording of the new script described below.
We designed our TSA and executed it to create a

recording script containing 517 sentences from 15000 sen-
tences scrapped from Donald Trump’s Twitter10.

TABLE II
STATISTICS ABOUT THE NEW SCRIPT BY TSA

Number of units Coverage
Sentence Word Unique word Phone Phoneme Diphone

517 4756 1427 23058 100.00% 31.34%

Our TSA scores all sentences in the database by a bonus
mechanism: each diphone is attached a score - the inverse of its

8http://www.festvox.org/cmu arctic/ CMU Arctic retrieval date:
09/04/2018

960× 60− 1 = 3599 in the current case, sil_sil excluded.
10https://twitter.com/realDonaldTrump Donald Trump’s Twitter retrieval

date: 09/04/2018

frequency in Arctic A. The rarer the diphone is, the higher the
score would be. The final score for each sentence is scaled by
length. Deciding the total number of sentences we want (600)
and filtering out sentences longer than 15 words, we created
a script as Table II describes.

Results
There are 2531 unseen diphone types in Arctic A, taking

up more than 70% of the total number of diphone types.
In our new script, despite of the smaller size, the diphone

coverage increases by 1.73%. It proves the effects of our
bonus mechanism. We can also imagine that the new diphone
distribution is flatter than previous.

A higher diphone coverage leads to fewer missing diphone
problems. If we use the new system to synthesise sentences
containing rare diphones, we can expect a better outcome. The
sentences for synthesis should ideally be random, neither from
novel nor politics, to avoid the influence of domain. Although
the new diphone coverage is still far from satisfaction, at least
we proved that a wiser TSA could achieve more rare diphone
types11. Also, as not all diphone types listed by permutation
and combination exist in English, next time, we will start by
reducing impossible diphone types.

B. Text selection: domain

Hypothesis Domain-specific system could produce speech
more natural.

Experiment design
Using the system in Section III-A, which is also domain-

specific, we tested the hypothesis by a web-based listening
test12.

The structure of the listening test and the correspondence
between the questions and the hypotheses we are testing
are shown in Figure 1. In Introduction, we asked listeners
about their environment, and some demographic questions: age
(Figure 2), mother language or English ability (Figure 3), ex-
perience in speech synthesis (Figure 4), hearing/vision impair-
ment, etc. There are two aspects of evaluation: naturalness and
intelligibility. Naturalness means how an utterance is accepted
as an utterance spoken by a human being; intelligibility means
how well an utterance can be recognised by listeners. To check
whether listeners are seriously taking the test, we put two
questions including a natural utterance. If the listener fail to
give expected responses in Q7 and Q13, we mark them as
outliers.

We synthesised three random sentences from Donald
Trump’s Twitter for Q1 to Q3, and three from Arctic B (the
same domain as Arctic A) for Q4 to Q6. In each pair of
sentences, one is synthesised by the baseline and the other by
the domain-specific system. Listeners choose the more natural
one.

Results
The results for Q1 to Q6 are in Figure 7, 8, 9, 10, 11 and

12 (the expected choices that would support our hypothesis

11which are the least rare among all the rare ones
12https://edinburgh.eu.qualtrics.com/jfe/form/SV 413EPK7BsZhDbYV

The listening test retrieval date: 09/04/2018. To keep the anonymity of the
assignment, we did not include any personal information. However, as the
recordings might reveal our identity, please do not listen to them.
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Introduction
Environment checking
quiet room, earphones/headphone, computer/mobile phone

Demographic Information
Age, mother language, English ability, experiences in speech synthesis, hearing/vision impairment

Part I: Naturalness (A/B test)
13 pairs of sentences for pair-wise comparison

Q1 - Q3 [domain] (sentences from Donald Trump's Twitter): one synthesised by the
baseline, the other by the system in Section III-B
Q4 - Q6 [domain] (sentences from Arctic B): ditto
Q7 [sanity checking question]: one of the recordings is from the voice talent's natural
reading
Q8 - Q12 [data quantity and forced alignment]: one synthesised by the baseline, the
other by the system in Section III-C
Q13: the same as Q7

Part III: Intelligibility (Typing) 
1 example shown at the beginning: Colourless green ideas sleep furiously 
Q20 - Q28 [target:join]: 9 SUSs, each three following the three templates below; each
three synthesised by the baseline with varying target:join: 100:1, 1:1, 1:100 

templates: 
(1) Article + noun + verb + preposition + article + colour + noun . 
(2) Verb + (preposition) + article + noun + conjunction + verb . 
(3) Wh-word + auxiliary verb + pronoun/(article + noun) + verb + article + noun ? 

Thanks 
Comments from the listeners

Part II: Naturalness (Ranking) 
6 groups of 3 sentences 

sentences in each group are synthesised by a system with varying target:join: 100:1,
1:1, 1:100 
Q14 - Q19 [target:join]: all three sentences synthesised by the baseline but with different
target:join 

Fig. 1. Structure of the listening test

are coloured orange). Except for Q5, more listeners prefer the
expected system when synthesising sentences from the same
domain as the recording data of the system. For Q5, we guess
the unexpected result is due to the very unnatural prosody
on one word in the sentence, which makes it stand out. The
could be solved by F0 manipulation or costs tuning. Overall,
the results support our hypothesis.

However, the limitation in number and range of the test
sentences has to be pointed out. Considering the expected time
listeners would spend on the test, we did not include a large
number of various sentences. But we can surly expect the same
results with more sentences, since with more sentences, more
frequent expressions (inherent zero join cost) used by both
domains are likely to be selected.

C. Data quantity and forced alignment

Hypothesis Forced alignment based on speaker-
independent training (more data) could produce speech
more natural.

The justification for this hypothesis was stated in Section
II-D. To recap, larger data size due to multiple speakers’
recordings is helpful to speaker-independent training, leading
to better alignment, thus more natural speech.

Experiment design
To train speaker-independent AMs, we collect recordings

from three other voice talents whose gender and accent13 are
the same as our voice talent. The total amount of data is
fourfold the baseline. The diphone coverage is unchanged as
the speakers are using the same script. Alignment is only done
on our voice talent’s transcript.

In Q8 to Q12, we synthesised pairs of sentences, one by the
baseline and the other by the fourfold system. The sentences
are randomly selected from phonetically balanced Harvard
sentences14.

Results
The results for Q8 to Q12 are in Figure 13, 14, 15, 16, and

17. Except for Q8, most listeners think the sentences from
the fourfold system are more natural. In Q8, listeners almost
equally like both systems. In the clip by the fourfold system,
the utterance was spoken swiftly with consistent power; in the
other clip, one of the word coat was especially prolonged and
stressed. We guess, despite one word’s standing out, listeners
prefer the latter because they think a natural utterance features
prosody and stressed words. Generally, the results support our
hypothesis.

In contrast, the objective evidence does not seem so. We
computed the algebraic average of the sum of the training
data likelihoods in aligned.3.mlf of both systems. We
also computed the percentage of achieving larger phone-level
likelihood in the fourfold system against the baseline (Table
III).

TABLE III
TRAINING DATA LIKELIHOOD OF THE BASELINE AND THE FOURFOLD

SYSTEM: LIKELIHOOD MEANS TRAINING DATA LIKELIHOOD; PERCENTAGE
MEANS THE PERCENTAGE OF PHONES WITH LARGER LIKELIHOOD

Baseline Fourfold
Likelihood -2444.10 -2517.75
Percentage 50.53%

Although the fourfold system marginally has more phones
with larger likelihood, its overall likelihood is much lower than
the baseline. The AMs might be underfitting due to insufficient
training. The objective evidence contradicts the hypothesis.

For future direction, we consider augmenting the data size
to at least tenfold the baseline and add more GMMs, to realise
fully-trained speaker-independent forced alignment. This was
impossible to carry out in the current experiment due to the
small number of voice talents of the same gender and accent as
our voice talent. Also, instead of taking the algebraic average
of the likelihoods, we should think of more sophisticated
and reliable ways of computation, e.g. weighting according
to phone frequencies.

D. Target cost versus join cost

Hypothesis Larger target cost versus join cost target:join
makes robotic sound of worse naturalness and intelligibility;
smaller target:join improves naturalness and intelligibility
together.

13To protect the anonymity of the work, these information are not revealed.
14http://www.harvardsentences.com Harvard sentences generator re-

trieval date: 09/04/2018
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Larger weighting on target costs would pick up candi-
dates that individually are very similar to each corresponding
target. But meanwhile, low weighting on join costs causes
bad joins almost everywhere. So the outcome is just robotic
concatenation of diphones. In contrast, larger weighting on
join costs could make the speech smooth and less robotic. It
could also make liaison sounds more natural. When hearing
natural utterance, we do not always have to catch every word
and every sound. Given enough context, we can speculate
most contents. Even with nonsensical context, people can at
least tell the content at word-level. So we hypothesise that
naturalness and intelligibility actually supplement each other
when the join cost is higher.

Experiment design
To test naturalness, we prepared six groups of three sen-

tences, each synthesised by a system with varying target:join:
100:1, 1:1, 1:100 (Q14 to Q19). Listeners rank the sentences
within each group regarding naturalness. We on purpose added
some phrases of liaison: remind you of it at all, with a vest
on an adorable, etc. The bold parts are spoken in liaison.

To test intelligibility, we put 9 semantically unpredictable
sentences (SUSs) [12] consisted of frequent words (Q20 to
Q28). SUSs are nonsensical sentences which follow syntactic
templates. We used the modified syntactic templates based
on [12] (Table 1) to generate 9 sentences, 3 of each template,
and within each three of the same template, each is by a system
with a different target:join: 100:1, 1:1, 1:100.

Results
The average ranks of each system regarding naturalness are

demonstrated in Figure 18, 19, 20, 21, 22 and 23. Taking
the overall average rank of all systems in all questions, we
further obtain the average rank for systems with target:join
1:100 - 1.845, target:join 1:1 - 2, and target:join 100:1 - 2.155.
The listeners prefer the systems with more weights on join
cost, and rank the ones with more weights on target cost the
least natural. This matches with our hypothesis that higher join
costs smoothen the joins; higher target costs ruin the overall
naturalness.

For intelligibility, we computed word-level F1 scores for
all nine SUSs (Figure 5), and average word-level F1 scores
for SUSs by systems of different target:join (Figure 6). The
highest F1 0.85 happens when target:join is 1:100, much
higher than the other two. This agrees with our hypothesis that
naturalness and intelligibility are supplementing each other.
Higher target costs impede listeners’ understanding of words,
as they make every phone stand out and destroy the word-level
and sentence-level fluency.

We admit the ordering of sentences is not random enough
to prevent listeners from recognising the patterns. Besides, we
failed to compare the naturalness on liaison between different
systems, as people’s choices reflect more about their overall
feelings of the sentence. It would be more reasonable to do
intelligibility tests on liaison, because in that way we could
compute F1 scores on phrases of liaison.

IV. DISCUSSION AND CONCLUSION

From our experiments, unit selection is sensitive to design
choices such as data domain, target/join cost, etc. Due to

limited time and number of listeners, the results might be
inconclusive or sensitive to listeners and test design. Some
drawbacks we already realised are: bad ordering of test
sentences, and small amount of test sentences. In addition,
due to the word limit, we failed to make the best use of the
demographic information: native/non-native and with/without
speech synthesis experience. We expect native speakers and
listeners with speech synthesis experience to have smaller
divergence of views than the other two types of listeners.

As unit selection runs as a pipeline of several modules,
it is hard to guarantee the overall best settings by separate
optimisation of each module. Also, it could not work well
when the data size is extremely small. Recent decades have
witnessed the advantages of SPSS and DNN-SS. SPSS is a
model-based system storing sounds as statistical parameters
and generating parameters given input [3]. It could work even
given a small size of data. SPSS generalises unseen data by
clustering context-dependent units using decision trees. How-
ever, as the generation of parameters is based on maximum
likelihood15, the synthesised sound sounds muffled due to the
effect of averaging. As a statistical method, SPSS is sensitive
to the data. If there is a dataset of inconsistent speech, SPSS
is better at eliminating the inconsistency. But if there is a large
database of consistent speech, SPSS might not work as well
as well-engineered unit selection [3].

To overcome the inefficiency and over-generalisation of
decision trees in SPSS, DNN-SS is introduced. By directly
modelling speech from given text, DNN learns to generate
speech parameters. Using DNN to train AMs is advantageous
since it does not make any independence assumption on
features as HMM does. So correlated features - Filter bank are
feasible in DNN. But the computation cost of DNN is higher
than that of SPSS [13]. And neural network is sensitive to
architecture and parameter tuning.

Unit selection, as a conventional way of speech synthesis,
has been practical for many years. Although SPSS and DNN-
SS do outperform it in some aspects and are more widely
used in industry nowadays, we believe unit selection could be
practical and robust if given a large database containing rich
variety of units and well-tuned parameters.

15the mean always being the most likely
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