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1 Introduction 
 

Automatic Speech Recognition(ASR) maps acoustic signals to strings of words. Its 

main steps(components) include: front-end(feature vectors), training(acoustic model 

and language model, Viterbi and Baum-Welch algorithms), recognising(decoder) and 

evaluation. 

 

The front-end converts waveform into feature vectors, normally Mel-Frequency 

Cepstral Coefficient(MFCC), which are uncorrelated means of cepstral features. 

 

During training, the acoustic model(AM), basically Hidden-Markov Model(HMM), is 

learned from the observation of feature vectors and corresponding transcripts by 

creating statistical representation. AM applies Gaussian model(GM) probability 

density function(pdf)s to represent the mean and variance of MFCCs for each 

corresponding HMM state. Viterbi and Baum-Welch are the main algorithms for 

training. The language model(LM), including the dictionary mapping words to 

phones, provides probabilities of words occurring in some order. AM and LM are 

connected into a finite state automaton(FSA). 

 

In recognition, the Viterbi decoder, aligns observation to be recognised with states 

and finds the most probable state sequence given the observation. The recognition 

result is evaluated by word error rate(WER). 

 

ASR faces challenges due to the inherent variability of speech. Speakers’ genders, 

accents, recording equipment, etc. might differently affect ASR performance. To 

explore whether and how different factors may influence ASR performance, we 

implement various experiments on an HMM-based ASR system built by the Hidden 

Markov Model Toolkit(HTK)[13]. 
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2 Background 
 

Figure 1. A compiled model of digit recogniser: uniform-probability LM and 3-emission-

state whole-word AMs 

(rounded rectangles are AMs of digit, within which are states of GMs featuring mean 

and variance; all rounded rectangles constitute the FSA LM for digits; the dashed line 

makes digit sequence recogniser(DSR) possible) 
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 2.1 Data collection and acoustic features 
 

Data is the pre-requisite for ASR. We need labelled training data to train models and 

labelled testing data to test models’ performance. In an isolated digit 

recogniser(IDR), each digit is labelled its corresponding orthographic word; silence 

between digits is labelled “junk” and discarded. Besides, an orthographic 

transcription of test data, in the form of MLF(master label file) is created to measure 

the model performance. 

 

Collected waveform data, is parameterised and represented by acoustic features. 

These acoustic features are feature vectors, each representing the information in a 

small time window(frame) of the signal[10, p.331]. For each signal in each frame, 

Discrete Fourier Transform extracts its spectral information. Then, for each 

spectrum, a cepstrum, which separates source and filter, is computed by taking log 

of the spectrum. We keep the first twelve cepstral coefficients as twelve features for 

a frame and take the energy in this frame as the thirteenth, and thirteen more 

velocity features and another thirteen acceleration features of energy changing. The 

above 39 features constitute a MFCC feature vector for a frame. 

 

MFCC is important in ASR. First, due to the feature of cepstrum, it excludes features 

of source which are irrelevant to ASR. Second, as cepstral coefficients are 

uncorrelated[10, p.336], HMM becomes simpler; otherwise it has to capture feature 

covariance, which complicates the computation. 

 

In HTK, HCopy makes waveform into MFCC feature vectors. 
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2.2 Training HMMs 
 

HMM, a probabilistic generative model, is ASR’s dominant paradigm. In ASR, for 

each basic unit to be recognised, there is an HMM. In IDR, if using whole-word 

models, for every word there is an HMM(Fig.1); if using phone models, for each 

phone or sub-phone there is an HMM. In each HMM, there are two non-emission 

states(start&end) with at least one emission state. Each emission state is a GM 

parameterised by its mean μ and variance σ2 learned from training data. GM 

statistically captures speech variability. 

 

Training includes initialisation and re-estimation. First, we uniformly segment MFCCs 

according to the number of states, and calculate each state’s initial μ and σ2. We 

then apply Viterbi to re-align the observation to states and update μ and σ2 until they 

become steady. Besides Viterbi, a more fine-grained algorithm, Baum-Welch 

algorithm is also implemented in re-estimation. Different from Viterbi which gives the 

single most probable alignment, Baum-Welch considers the probabilities of all 

possible state sequences, and update model parameters by taking the mean of the 

sum of weighted probabilities of each state sequence given an observation. Thus it 

“softly” aligns a state sequence to an observation. However, it takes a longer time 

and more computation. 

 

HTK provides HInit to initialise HMMs and use Viterbi algorithm to update the 

parameters. In HRest, the parameters are further re-estimated by Baum-Welch 

algorithm. 

 

By default, we use 4-emission-state 39-dimension MFCC HMMs, but it is flexible to 

change the model topology in HTK. HMM in HTK includes dimensionality of 

observation vectors; type of observation vector MFCC, form of the covariance matrix 

diagonal, number of states, parameters of GMs in states; a transition matrix with 

zero probabilities indicating never-ever allowed transitions. 
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 2.3 Language modelling 
 

LM is a generative model, emitting a word sequence given a sentence. LM is 

important in ASR in the sense that it guides and constrains the search among 

alternative word hypotheses as LM determines the probability for a word given word 

history[3]. With LM, it is more likely to have lower WERs[9]. In Large-Vocabulary 

Continuous Speech Recognition(LVCSR), we usually use trigrams or 4-grams[10, 

p.348]. In IDRs, we apply a simple FSA LM assigned uniform probability to each 

digit, only allowing sentences containing one digit. The dashed line linking the end to 

the start indicates an LM for digit sequence of arbitrary length. 

 

An FSA LM can be easily combined with HMM AMs as in Fig.1, because the LM and 

AM are both FSA. We simply substitute every state of the LM with the corresponding 

AM. 

 

In HTK, HVite compiles the LM with AMs to make a single finite-state recognition 

network, resulting in a generative model that emits a sequence of MFCCs given a 

sentence. 
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 2.4 Recognition using HMMs 
 

Recognition is to use Viterbi and forward algorithm to find the most probable 

sequence of states in HMM AM given the observation of MFCCs, and then find the 

most probable word sequence given observation of a sentence based on LM, thus 

mapping acoustic signals to strings of words. 

 

In IDR, we find the most probable state sequence of each HMM given the 

observation of MFCCs to be recognised, and take the model that gives the highest 

probability as the recognition result because the LM in this case is one with uniform 

transition probabilities. And DSR is only different from IDR that it repeats the 

recognition process of a single digit to deal with digit sequence of arbitrary length. 

 

Generally in ASR, LM gives the probability of emitting a certain word given the state. 

By combining the probabilities provided by LM and AM estimators, we finally get a 

string of words that maximises the combined probabilities. 

 

In HTK, HVite does the recognition. 

 

The performance of HMM-ASR is evaluated by word error rate(WER). WER tells 

how much the word string returned by the recogniser differs from a reference 

transcription[10, p.362]. WER is computed as: 

 

𝑊𝐸𝑅 =
𝑤𝑜𝑟𝑑_𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 + 𝑤𝑜𝑟𝑑_𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 + 𝑤𝑜𝑟𝑑_𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙_𝑤𝑜𝑟𝑑𝑠_𝑖𝑛_𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 ×100% 

 

In HTK, HResults computes insertions, substitutions and deletions, and reports 

accuracy. The following experiments are consistent with using WER as evaluation. 
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3 Experiments 
 

 3.1 Number of HMM emission states 
 

  3.1.1 Hypothesis 
 

The number of emission states(No.ES) defines different HMM topology. So, the 

hypothesis is, No.ES affects ASR performance. If so, some relationship between 

No.ES and ASR performance is expected to be seen. 

 

  3.1.2 Experiment design 
 

No.ES varies from 3 to 21, and the other variables(gender, accent and microphone 

type) are controlled the same or of the same distribution. Two groups of experiments 

of different amount of training data are designed below: 

 

 Amount Gender Accent Microphone type Overlap?1 

Training A 50 

1:12 NN3,Mx4 Mx No Training B 20 

Test 20 

Table 1. The training sets include 50 or 20 non-native speakers with mixed accents 

and microphone types; the test data includes 20 non-native speakers with the same 

distribution of genders and microphone types as the training data 

 

 

 

 

 

																																																								
1	Whether	there	is	overlap	between	training	and	test	data.	
2	If	not	stated,	female:male.	
3	NN:Non-Native	speakers.	
4	All	experiments	control	variables	not	of	concern.	Those	variables,	marked	by	“Mx”,	are	
either	controlled	the	same	or	of	the	same	distribution.	
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  3.1.3 Results 
 

The WER(%) and runtime(s) are shown below. 

 

Training 

data 

amount 

No.ES WER(%) 
WER 

ranking 
Runtime(s) 

Runtime 

ranking 

50 

3 25.33 19 14.483 1 

4 20.33 18 17.495 2 

5 16.00 17 20.847 3 

6 12.67 16 22.997 4 

7 10.00 15 27.606 5 

8 8.50 14 29.253 6 

9 6.83 13 30.874 7 

10 5.50 12 34.163 8 

11 4.67 8 37.697 9 

12 4.67 9 40.108 10 

13 4.17 2 42.910 11 

14 4.67 10 43.318 12 

15 4.67 11 47.355 13 

16 4.17 3 49.627 14 

17 4.50 6 53.301 15 

18 4.17 4 55.669 16 

19 4.17 5 58.087 17 

20 3.67 1 63.346 18 

21 4.50 7 63.866 19 

Table 2. The WER(%) and runtime(s) with varying No.ES(from 3 to 21); training on 50 

and testing 20 speakers of mixed genders, accents and microphone types 
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Training 

data 

amount 

No.ES WER(%) 
WER 

ranking 
Runtime(s) 

Runtime 

ranking 

20 

3 26.00 19 9.830 1 

4 17.17 18 10.327 2 

5 12.33 17 11.894 3 

6 10.17 16 12.926 4 

7 8.50 15 14.480 5 

8 6.83 14 14.998 6 

9 6.50 13 16.221 7 

10 5.17 12 16.993 8 

11 4.83 11 17.090 9 

12 3.83 7 18.982 10 

13 3.33 1 19.797 11 

14 3.50 2 21.498 12 

15 3.67 4 25.686 13 

16 3.67 5 22.737 14 

17 4.33 9 24.001 15 

18 3.50 3 25.042 16 

19 3.67 6 26.665 17 

20 4.00 8 27.012 18 

21 4.33 10 28.469 19 

Table 3. The WER(%) and runtime(s) with varying No.ES(from 3 to 21); training and 

testing on 20 speakers of mixed genders, accents and microphone types 

 

Table 4 shows the Spearman correlation coefficient of No.ES and WER and runtime. 

 

 𝑟; of No.ES and WER 𝑟; of No.ES and runtime 

Training A -0.8859649 1 

Training B -0.7701754 1 

Table 4. The Spearman correlation coefficient 𝑟;  between No.ES and WER and 

runtime of two groups 
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We see an almost monotonic negative correlation between No.ES and WER, and a 

perfect monotonic positive correlation between No.ES and runtime in both groups. 

 

Fig.2 and Fig.3 visualises Table 1 and Table 2 respectively. 

 

Figure 2. The visualisation of WER(%) and runtime(s) with varying No.ES(from 3 to 

21); training on 50 speakers(red dot at 20 states: the so-far lowest WER 5.17%) 

 
 

Figure 3. The visualisation of WER(%) and runtime(s) with varying No.ES(from 3 to 

21); training on 20 speakers(red dot at 13 states: the so-far lowest WER 3.33%) 
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These two figures show that, for the group trained on 50 speakers, the optimal 

No.ES is 20; for the other, it is 13. 

 

Furthermore, Fig.4 compares the WERs between two groups. 

 

Figure 4. The WER(%) of two groups with varying No.ES(from 3 to 21) (red points: the 

so-far lowest WERs) 

 
 

Fig.4 shows a similar trend of WER between two groups. Generally, WER decreases 

with No.ES increasing. In both groups, WER decreases considerably from 3 states to 

8 states; after that, WER shrinks slowly, gradually becomes stable and fluctuates in 

a small range. Besides, the bigger the amount of training data is, the larger WER is, 

regardless of No.ES. 

 

However, No.ES might vary, for each digit AM, the number of state is fixed. This is 

called fixed length modelling[14], which lacks flexibility, as the length/duration of digit 

actually differs. To assign a unique No.ES to each model might help, such as Bakis 

length modelling[2] finding the best alignment between each digit and states, or 

some more flexible method[7] adding a constant additive to Bakis formula. 

 

Furthermore, with more states, models risk of overfitting to training data. Thus WER 

is expected to go up again after a certain No.ES. Specifically, when No.ES exceeds 

the biggest number of frames of digit, it will probably break down. What’s more, more 
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states are penalised by accelerated increase in runtime and do not always guarantee 

better recognition. These are all important cues when deciding the optimal No.ES. 
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In the following each experiment, the No.ES is default to 4, and there is no overlap 

between any training and test sets, if not stated. 

 

3.2 Language family 
   

3.2.1 Hypothesis 
 

Languages developed from the same historic language belong to the same language 

family. Languages in the same language family usually share some features in 

phonology, morphology and syntax. So, a hypothesis is that ASR systems perform 

better when tested on data of accents from the same or close language families as 

the training data, than those tested on data of accents different or far from the 

language family of the training data. 

 

  3.2.2 Experiment design 
 

According to the language families categorised by Ethnologue[5], we choose Indo-

European and Sino-Tibetan as cross-language-family comparison. Inside the Indo-

European language family, there is cross-branch comparison between Germanic and 

Romance. The training data uses UK English(Indo-European: Germanic) and the 

same for Test A; Test B contains some other Indo-European Germanic accents 

except English; Test C contains Indo-European Romance accents; Test D contains 

accents from another language family: Sino-Tibetan. 
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 Amount Gender Language family Accent Microphone 

Training 

30 1:1 

Indo-

European 

Germanic 

UK 

Mx 

Test A UK 

Test B 

German,Dutch, 

Danish,Swedish, 

Norwegian 

Test C Romance 

French,Greece, 

Italian, 

Romanian 

Test D Sino-Tibetan Chinese,Thai 

Table 5. The training and data sets of testing how language families or branches 

influence ASR performance 

 

  3.2.3 Results 
 

 WER(%) 

Test A 7.63 

Test B 9.22 

Test C 15.24 

Test D 16.70 

Table 6. WER(%) of different language families or branches 

 

In Table 6, WER ascends from Test A to Test D. The closer the accents of the test 

data are to the training data, the lower WER is. The WER of crossing-branch accents 

is lower than that of crossing-language-family accents. Languages belonging to the 

Germanic branch in the Indo-European family tend to have similar linguistic features 

with English, and even share common vocabulary in similar orthographic form and 

pronunciation. Languages in the Romance branch still share something in common 

with Germanic languages, but the differences influence ASR performance even 

more. The WER of testing on Romance speakers is considerably higher than that of 

Germanic speakers. Besides, testing on accents from a different language family 

results the highest WER. These suffice to conclude that accents from different 

language families and branches considerably affect ASR performance.  
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 3.3 Gender and Accent 
 

  3.3.1 Hypothesis 
 

Accents reflect the differences in shapes of vocal tracts, which are important features 

in MFCCs. Female and male may also have different shapes of vocal tracts. So, the 

hypothesis is that, accents and genders both affect ASR performance. And further 

comparison between these two factors will also be carried out. 

 

3.3.2 Experiment design 
 

From Table 7 to Table 10, all factors except genders are controlled. From Table 11 

to Table 14, all factors except accents are controlled. 

 

For the sake of convenience, we call from Test A to Test H the gender experiments, 

and the rest, the accent experiments. 
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Gender 
 

 Amount Gender Accent Microphone 

Training 20 Female 

UK Mx Test A 
10 

Female 

Test B Male 

Table 7. Training on UK female; testing UK female and male 

 

 Amount Gender Accent Microphone 

Training 20 Male 

UK Mx Test C 
10 

Male 

Test D Female 

Table 8. Training on UK male; testing UK male and female 

 

 Amount Gender Accent Microphone 

Training 20 Female 

NA5 Mx Test E 
10 

Female 

Test F Male 

Table 9. Training on NA female; testing NA female and male 

 

 Amount Gender Accent Microphone 

Training 15 Male 

NA Mx Test G 
10 

Male 

Test H Female 

Table 10. Training on NA male; testing NA male and female 

 

 

 

 
 

																																																								
5	North	America	
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Accent 
 

 Amount Gender Accent Microphone 

Training 20 

Female 

UK 

Mx Test I 
10 

UK 

Test J NA 

Table 11. Training on UK female; testing UK and NA female 

 

 Amount Gender Accent Microphone 

Training 20 

Male 

UK 

Mx Test K 
10 

UK 

Test L NA 

Table 12. Training on UK male; testing UK and NA male 

 

 Amount Gender Accent Microphone 

Training 20 

Female 

NA 

Mx Test M 
10 

NA 

Test N UK 

Table 13. Training on NA female; testing NA and UK female 

 

 Amount Gender Accent Microphone 

Training 15 

Male 

NA 

Mx Test O 
10 

NA 

Test P UK 

Table 14. Training on NA male; testing NA and UK male 
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  3.3.3 Results 
 

 Test WER(%) Delta(%) Mean(%) Variance 

Gender 

A 3.44 
-13.01 

-16.6925 66.4474917 

B 16.45 

C 2.26 
-16.18 

D 18.44 

E 9.00 
-9.39 

F 18.39 

G 5.48 
-28.19 

H 33.67 

Accent 

I 3.44 
-7.56 

-4.22 11.2243333 

J 11.00 

K 2.26 
-6.13 

L 8.39 

M 9.00 
-3.19 

N 12.19 

O 5.48 
0 

P 5.48 

Table 15. The WER(%), delta(%), mean(%) and variance of WER of gender and 

accent comparison test groups 
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Figure 5. The visualisation of results of the gender experiments 

(blue:WER(%), orange:WER delta(%)) 

 
 

Figure 6. The visualisation of results of the accent experiments 

(blue:WER(%), orange:WER delta(%)) 
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Table 15, Fig.5 and Fig.6 show that, mismatch between genders or accents both 

raise WERs. Besides, the mean and variance of WERs in the gender experiments 

are much larger than those in the accent experiments. Genders seem to influence 

ASR more than accents do. However, genders and accents both represent 

differences in filter frequencies indicating different shapes of vocal tracts, which 

should not result in such big gaps. We thus make two possible conjectures: (1) the 

differences in accents between native English speakers is not obvious enough to 

adversely impact ASR, and (2) features of tones might still be remained in cepstra 

and MFCCs, as genders largely determine tone features (male’s tones being usually 

lower than female’s). Although pitch information as irrelevant to recognition, is often 

said to be discarded by ASR[8], tone, which is equivalent to pitch in the sense of 

perception of fundamental frequency, might still be useful in ASR as it helps 

differentiate genders and even emotions in advanced ASR tasks. 
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 3.4 Viterbi and Baum-Welch 
 

  3.4.1 Hypothesis 
 

The training of ASR has two main steps: initialisation and re-estimation. In HTK, 

HInit initialises HMMs by uniform segmentation and Viterbi; HRest further updates 

model parameters by Baum-Welch. The hypothesis is that, omitting any one of the 

training steps, affects ASR performance. 

 

  3.4.2 Experiment design 
 

This experiment includes two groups of different genders. All the other factors are 

mixed. 

 

Group_F Amount Gender Accent Microphone 

Training_F 30 Female Mx Mx 

Test_F 10 Female Mx Mx 

Table 16. The female group of the omitting training algorithm experiment: training on 

30 female and testing on 10 female, both with mixed accents and microphone types 

 

Group_M Amount Gender Accent Microphone 

Training_M 30 Male Mx Mx 

Test_M 10 Male Mx Mx 

Table 17. The male group of the omitting training algorithm experiment: training on 30 

male and test on 10 male, both with mixed accents and microphone types 
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  3.4.3 Results 
 

 
WER(%) 

Default 
Time(s) 

WER(%) 

Without 
HInit 

Time(s) 
WER(%) 

Without 
HRest 

Time(s) 

Group_F 6.12 18.021 6.12 13.738 9.78 11.503 

Group_M 5.71 17.722 5.71 12.882 16.71 11.813 

Table 18. The WER(%) and runtime(s) of the omitting training algorithm experiment 

 

From Table 18, in both groups, the WERs are the highest when omitting HRest, i.e. 

Baum-Welch. The WERs do not change even omitting HInit, i.e. initialization and 

Viterbi. 

 

The initialisation based on uniform segmentation is crude, but it provides initialised 

parameters for the following re-estimation algorithms. These initialised parameters 

greatly decrease the runtime and computation of Viterbi and Baum-Welch; otherwise 

the two algorithms would take a longer time to have the re-estimated parameters 

respectively converge. 

 

Baum-Welch is more fine-grained than Viterbi that, Baum-Welch considers all 

possible state sequences generated by the model while training, but Viterbi only 

gives one single best alignment. This makes sense when we observe a higher WER 

when omitting Baum-Welch. 

 

Therefore, Baum-Welch plays a bigger role in influencing ASR performance.  
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4 Discussion and conclusion 
 

ASR compiles AM and LM together to recognise speech into words. The 

implementation of Viterbi and Baum-Welch, two effective algorithms in training and 

decoding, ensures good performance of ASR. However, still there are multiple 

factors that could influence ASR performance such as: speakers’ gender, accent, 

recording equipment; the amount of data, the number of hidden states; and the 

actual implementation of algorithms. All are proved to affect ASR performance in 

different degrees, which inspires the consideration for building better ASR systems 

such as: choosing better-balanced training data of a reasonable amount, selecting 

optimal number of states or varying number of states for observations of different 

length/duration; effectively capturing the biggest diversity of training data regarding 

genders, accents, etc. Further experiments will cover some other factors, for 

instance, the quality of data, models implemented in AMs, etc.	
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