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Part1:Lab Report 
 

 

1 Introduction 
 

This report discusses theories of text-to-speech(TTS) based on practical of the 

Festival Speech Synthesis System. The core procedures in TTS – Text processing, 

pronunciation and prosody, and waveform generation, are discussed first. In light of 

these concepts, the pipeline of Festival(Version 2.4.0) is then explained. Through 

practicals, different categories of mistake in English are found in Festival. Regarding 

these mistakes, potential reasons are explained and possible solutions are 

proposed. 

  



	

2 Background 
 

 2.1 TTS 
 

TTS, also known as speech synthesis, is the process of converting text into speech, 

in other words, acoustic waveforms [1, p.249]. In common TTS models, there are 

essentially two components: a text-analysis system and a speech-synthesis system 

[15, p.38]. Input text is analysed into phonemic internal representation, and 

converted into a waveform. 

 

  2.1.1 Text processing 
 

In TTS, text processing, or text normalisation, is “transforming an input text into a 

normalised form internal to the system” [4]. Text processing does not require higher-

level understanding of text. Its main steps include tokenisation, non-standard 

words(NSWs) recognition and homograph disambiguation. 

 

In tokenisation, text is first separated by punctuation into sentences. Each sentence 

then becomes a list of tokens split by whitespace. Separation by punctuation 

performs well mostly, except for some special cases. For example, when a period is 

part of an abbreviation(e.g. Prof.), period disambiguation is necessary. 

 

Disambiguation methods are applied in sentence tokenisation. The simplest one is to 

implement a sequence of regular expressions in an FST [11, p.104]. Apart from the 

deterministic algorithm in such kind of hand-built FST-based tokenisers, there are 

other fancier algorithms trained by machine learning(ML) methods. They require a 

training set with hand-labelled sentence boundaries, and apply supervised ML 

methods, e.g. decision trees, logistics regression, etc. [11, p.285]. Besides, a 

classifier deciding sentence boundary is also useful, given successfully-extracted 

features of sentence boundary. 

 

Next challenge in text normalisation is NSW. NSWs are non-standard words that 

could not been tokenised as normal words. NSWs come in various forms: 



	

abbreviation(St.), acronym(UNESCO), numbers(date/month/year), etc. NSWs 

usually need to be expanded into words, so that they could be correctly pronounced. 

[14] proposes classification of NSWs and corresponding ways of expansion. NSWs 

can be detected by dictionaries as they normally are not in dictionaries; even some 

do exist, dictionaries should include ways of expansion. NSWs can be classified by 

hand-written rules of regular expressions or using the information from neighbouring 

words. For example, a four-digit number is classified as NYER(year) when preceding 

or following tokens of month, and expanded into two pair of digits pronounced as an 

integer. 

 

The third step is homograph disambiguation, where words in the same form are 

pronounced differently according to context. [16] describes seven major categories 

of homographs and introduces three approaches of homograph disambiguation: N-

gram taggers [7][15][5], Bayesian classifiers [8] and decision trees [10][13]. [16] 

integrates their strengths into a hybrid algorithm. The algorithm sets a k-word-width 

window of the target word to extract effective collocations for discrimination. For 

instance, it is more likely for “bass” to be pronounced as /beis/ rather than /bæs/ if 

preceding “player”. The width of the window could be enlarged in both directions to 

extract neighbouring information about the target word more than collocations, e.g. 

POS, trigrams, etc. All the information, as evidence for homograph disambiguation, 

is then computed for log-likelihoods in conditions of all possible pronunciation of the 

target word, with smoothing methods. These likelihoods are sorted in a descending 

order in a decision list for each word. Finally, the pronunciation of the target word is 

decided by identifying the highest line in its decision list that matches the exact 

context.	

	

  2.1.2 Pronunciation & prosody 
 

The task in pronunciation and prosody is to convert the output of text processing – 

“discrete, linguistics, word-based representation into a continuous acoustic 

waveform” [15, p.192]. 

 



	

To decide word pronunciation, if a word exists in a lexicon with pronunciation, e.g. 

CMU Pronouncing Dictionary (CMU, 1993), its pronunciation is decidable; otherwise, 

a grapheme-to-phoneme(G2P, also known as letter-to-sound, LTS) algorithm is 

implemented to syllabise the unknown part of the words. Besides hand-written LTS 

rules, we have automatically-constructed rules by Classification and Regression 

Tree(CART). In CART, we search for the most probable phone sequence P, given a 

letter sequence L [11, p.293]: 

 

𝑃 =	argmax	𝑃 𝑃 𝐿  

𝑃 

 

With a training set of hand-labelled letter-to-phone alignment, we compute the 

probability of a phone 𝑝 given a letter 𝑙, applying MLE: 

 

𝑃 𝑝' 𝑙( = 	
count(𝑝', 𝑙()
count(𝑙()

 

 

Finally, through Viterbi algorithm, a single good alignment for each pair (𝑃, 𝐿) is 

obtained, which is later used to train an ML classifier. 

 

Prosody modification is to determine phrase break, F0 and duration. Phrase break is 

predicted through CART asking yes-or-no-questions about features such as length, 

neighbouring POS and punctuation [11, p.297]. Diphone synthesis needs F0 and 

duration modification. Duration is predicted by rule-based or statistical models 

associated with multiple duration-related factors. F0 is predicted by specifying F0 

target points for each pitch accent and boundary tone, and creating F0 contour for 

the whole text by interpolating among these targets [1]. 

 

  2.1.3 Waveform generation 
 

In concatenative TTS system, pre-recorded units of speech are concatenated. 

Waveform is generated through diphone synthesis or unit selection synthesis. 

 



	

A diphone is a unit consisting the latter half of the first phone and the first half of the 

second phone. Diphone synthesis brings diphones together. But in unit selection 

synthesis, instead of merely diphones, it stores units of various sizes, which enables 

us to select consecutive phones in database that makes the pronunciation more 

natural. 

 

There are two ways of signal processing to manipulate waveform. One is Time-

domain Pitch-Synchronous OverLap-and-Add(TD-PSOLA) which modifies F0 and 

duration through extracting frames, manipulating and recombining them by adding 

up the overlapped signals [11, p.309]. To increase the F0, we move the periods 

extracted from the original waveform closer, add the overlap and duplicate periods to 

keep the duration unchanged; conversely, periods are moved apart. Another one is 

Linear Prediction Coding(LPC). Rather than constructing waveform database, it 

converts waveform into parameters of source-filter models (F0 + voicing decision as 

source; LPC coefficients as filter). With source-filter models, LPC manipulates 

source to obtain desired duration and F0 and inserts filter coefficients to smooth 

around the concatenation points. 

 

 2.2 Festival: linking practice with theory 
 

Festival is a concatenative TTS system and pipelined model of several modules that 

each “performs one specific task” [15, p.39]. Figure 1 displays its pipeline. 



	

 
 

Figure 1. The pipeline of Festival (rectangle: command in Festival / procedure in 

TTS; square: relation created or modified after each step)  



	

3 Finding and explaining mistakes 
 

3.1 Text normalization 
 

“18/10/2017” 
 

In British English, “date/month/year” is the general way to display calendar date. In 

“18/10/2017”, Festival mistakenly utters it as “eighteen, ten, twenty seventeen”, as it 

fails in normalising it into “date/month/year”. After the Token_POS module in 

Festival, we see: 

 
name 18/10/2017 ; whitespace "" ; prepunctuation "" 

 

 Festival fails to tokenise this numeric NSW. Festival uses Yarowsky-style 

disambiguators, each including a regular expression and a CART tree [3, 15.3.1]. 

For a token that matches a regular expression, a CART tree is applied to assign a 

class to the token [3, 15.3.1]. Back to the example, it does not match any built-in 

regular expression, let alone being assigned POS tags by CART. One possible 

solution to this problem is to add customised regular expressions to Festival’s regex-

pool. Figure 2 shows one feasible regular expressions of solution in the form of FSA. 

 

Applying this FSA, Festival should correctly tokenise the expression by slash into 

three parts and give POS tags which are also the NSW categories: “18” – day, “10” – 

month, “2017” – year. They then could be expanded into correct words: eighteenth, 

October, two thousand and seventeen/twenty seventeen. 

 

Festival does not perform well neither in several other forms of calendar dates, e.g. 

“18.10.2017”, “18/Oct/2017” and “18-Oct-2017”. Correct tokenisation could be 

realised through simple modification in Figure 2, e.g. adding dot and hyphen with 

slash, adding abbreviation of month, etc.  



	

 
Figure 2. A feasible regular expression in the form of FSA that could correctly 

tokenise British-style calendar date 

 
 
 
 
 
 
 
 
 
 
 



	

3.2 POS tagging 
 

“a toy car” 
 

The phrase “a toy car” is tagged as follows. 

 
name a   ;pos dt 

name toy ;pos jj 

name car ;pos nn 

 

Where a noun tag(nn), is expected, Festival tags “toy” as an adjective(jj). The “toy” 

plays the role as a noun modifier of the head noun “car”, which should not change its 

POS. 

 

The same mistake occurs in “a desktop computer”(an example from [2]), “a dolphin 

brain”, etc. 

 

Festival includes a HMM-type POS tagger, so POS tags are assigned based on the 

probability distribution of tags given a word and N-Grams of tags. In other words, it 

depends on both the transition probability of hidden states, and the emission 

probability of each token-tag pair. The assignment of POS tags, or say decoding, is 

implemented by Viterbi algorithm, a kind of dynamic programming. 

 

In “a toy car”, the joint probability of “a toy car” and “dt jj nn” is: 

𝑃 𝑎	𝑡𝑜𝑦	𝑐𝑎𝑟, 𝑑𝑡, 𝑗𝑗, 𝑛𝑛

= 	𝑃 𝑑𝑡 < 𝑠 > 𝑃 𝑎 𝑑𝑡 ∙ 𝑃 𝑗𝑗 𝑑𝑡 𝑃 𝑛𝑛 𝑗𝑗 ∙ 𝑃 𝑡𝑜𝑦 𝑗𝑗 𝑃 𝑐𝑎𝑟 𝑛𝑛

∙ 	𝑃 </𝑠 > 𝑛𝑛  

 

And the joint probability of the correct tags for the example is: 

 

𝑃 𝑎	𝑡𝑜𝑦	𝑐𝑎𝑟, 𝑑𝑡, 𝑛𝑛, 𝑛𝑛

= 	𝑃 𝑑𝑡 < 𝑠 > 𝑃(𝑎|𝑑𝑡) ∙ 𝑃 𝑛𝑛 𝑑𝑡 𝑃(𝑡𝑜𝑦|𝑛𝑛) ∙ 𝑃 𝑛𝑛 𝑛𝑛 𝑃(𝑐𝑎𝑟|𝑛𝑛)

∙ 𝑃 </𝑠 > 𝑛𝑛  



	

 

Thinking about why Festival assigns an impossible “jj” for “toy”. From the equations 

above, it is reasonable to infer that 𝑃 𝑗𝑗 𝑑𝑡 𝑃 𝑛𝑛 𝑗𝑗  is larger than 

𝑃 𝑛𝑛 𝑑𝑡 𝑃(𝑡𝑜𝑦|𝑛𝑛), so that Festival’s Viterbi decoder follows the path of assigning 

“jj” to “toy”. This might be related to the actual method of smoothing applied in the 

decoder, and the size of the corpus as training set for the HMM tagger model. 

 

Assuming no smoothing is implemented in the model, 𝐶(𝑡𝑜𝑦, 𝑗𝑗) or 𝑃(𝑡𝑜𝑦, 𝑗𝑗) should 

be zero. To avoid zero occurrences, smoothing is implemented to the model. 

However, to tackle the current POS tagging problem, we could look back to the 

original count or probability of the word-tag pair before smoothing. If the original 

count or probability is zero, then the tagging result based on HMM with smoothing 

should be suspicious, and we should backtrack to one previous state to find a 

possible route. 

  



	

 3.3 Phrase break prediction 
 

“… own – government …” 
 
name own ;     pos jj ;  pbreak NB 

name - ;     pos punc ;pbreak NB 

name government ;pos nn ;  pbreak NB 

 

It is natural to insert a break after an em dash when it connects two parts in a 

sentence to emphasise the latter part. But the Phrasify module in Festival fails to do 

so. 

 

Festival utilises a CART tree and a probabilistic model to predict phrase breaks, 

including BB(big break), B(break), and NB(no break). From [3, 17], the default tree of 

phrase break is effective but simple, only including “?”, “.”, “:”, “'”, “\” and “;” as nodes. 

So, we can simply add an em dash as a node in the CART tree. The probabilistic 

model integrates an N-Gram model with a Viterbi decoder, and is then used to 

predict phrase break between words. The model assumes that “a break after a word” 

is based on “the part of speech of the neighbouring words and the previous word” [3, 

17], and includes an N-Gram of distribution of breaks and non-breaks. But it does not 

insert any break in such an example “an old big furry beautiful Scottish hat” that has 

five consecutive adjectives. One possible reason might be that, as Festival claims, it 

typically uses a 6-or-7-Gram. This leads to extremely small and close values of 

probability in the model due to data sparsity. As a result, it does not perform well for 

this 7-Gram “dt jj jj jj jj jj nn”. 

 

  



	

 3.4 Pronunciation 
 

“selfiegenic” 
 

“Selfiegenic”[12] is a recently-created adjective which describes someone attractive 

in selfies. Google returns 1,350,000 results of “selfiegenic”. Its pronunciation in 

Festival’s lexicion is: 

 
(((s e l f) 0) ((ii) 0) ((i jh) 0) ((e n) 0) ((i k) 0))) 

 

LTS rules are applied to “selfiegenic” just after the Pauses module. The wrong 

application of LTS rules here is assigning sound “i” to letter “e. The highlighted part 

in Figure 3 clearly proves this. The correct phone for “e” should be “𝜖”, indicating 

silence. 

 

 

        waveform 

(amplitude) 

 

spectrogram 

(frequency:Hz) 

 

tier1:letter 

 

tier2:sound 

(time: second) 

 

Figure 3. The “fie” part of the waveform and spectrogram of “selfiegenic” generated 

by Festival 

 

CART tree is implemented in pronunciation prediction. It asks binary questions about 

every letter to determine their phone. These questions and their order are learned 

automatically based on training data containing “alignment that tells us which phones 



	

align with which letter” [11, p.294]. Then the LTS CART tree decides the best sound 

for each letter. Figure 4 shows part of a possible improved LTS CART tree for letter 

“e”. 

 

word-final? 

 
+1=vowel? 

               
                -1=consonant? 

                         
                         +1=g/n/r/t? 

                    
      e:𝜖 

 

Figure 4. A possible CART tree deciding the phone for letter “e”		
(left branches denote answer yes; right branches denote answer no) 

 

 

  



	

 3.5 Waveform generation 
 

“discuss” and “discussion” 
 

Voiced onset time(VOT) indicates aspiration in consonants. Aspirated sounds have 

longer VOT. Both “c” in “discuss” and “discussion” should be transcribed as 

unaspirated stop [k], which has a short VOT. Part of the waveforms and 

spectrograms of “discuss”(Figure 5) and “discussion”(Figure 6) by Praat, with VOT 

highlighted, are displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 
waveform 

(amplitude) 

 

 

spectrogram 

(frequency:Hz) 

 

tier1:letter 

    

tier2:VOT 

(time: second) 

Figure 5. The “scu” part of the waveform and spectrogram of “discuss” 

 
     waveform 

(amplitude) 

 

 

spectrogram 

(frequency:Hz) 

 

tier1: letter 

 

tier2: VOT 

  (time: second) 
Figure 6. The “scu” part of the waveform and spectrogram of “discussion” 

 

The VOT for the “c” in “discuss” is 0.053126s; the one in “discussion” 0.020078s. 

This big gap results in perceptually distinct aspiration in “discuss” and more natural 

pronunciation in “discussion”. 

 



	

Festival employs TDPSOLA and LPC to modify F0 and duration. We could infer that 

for the “c” in “discuss”, its duration is either overlengthened by adding too much 

space between periods, or incorrectly modified by the source-filter model, so that the 

aspiration becomes extremely clear. 

 

This problem might be solved by applying unit selection synthesis. We can pick up 

the best piece of “sc” from database without signal modification by PSOLA. 

Meanwhile, we could train LPC models with more data distinguishing aspiration to 

achieve better generation. 

  



	

3.6 Other mistakes 
 

“see Marc” vs. “seem arc” 
 

In English, “glottalisation resolves potential word boundary ambiguity in stop before 

sonorant contexts” [6]. In “seem arc”, we expect to have glottalisation after “m”, 

which distinguishes it from “see Marc”. 

 

Festival fails to do correct post-lexical modification to “seem arc”. They have similar 

segment relation after PostLex module: 

 

“see Marc” 
name s 

name iii 

name m 

name ar 

“seem arc” 
name s 

name ii 

name m 

name ar

 

By creating built-in glottalisation rules and modifying CART trees deciding the 

application of such rules are possible solutions.



	

4 Discussion and conclusion 
 

Current TTS systems highly integrate a number of algorithms and models in theory 

to build practical modules dealing with different TTS problems. From the simplest 

regular expression, to CART tree, N-Grams, HMM, and Viterbi, they are 

implemented in TTS tasks including tokenisation, pronunciation prediction, waveform 

generation, etc. However, the systems are far from perfect. Further improvement in 

algorithms and models is necessary. Meanwhile, users can customise functions in 

the libraries of many TTS systems to meet their goals. 

  

 

 

 

  



	

Bibliography (in alphabetical order) 

 

[1] Anderson, M. J., Pierrehumbert, J. B., and Liberman, M. Y. (1984). Improving 

intonational phrasing with syntactic information. In ICASSP-84, pp. 2.8.1–2.8.4. 

[2] Barker, K., & Szpakowicz, S. (1998, August). Semi-automatic recognition of noun 

modifier relationships. In Proceedings of the 36th Annual Meeting of the Association 

for Computational Linguistics and 17th International Conference on Computational 

Linguistics-Volume 1 (pp. 96-102). Association for Computational Linguistics. 

[3] Black, A., Taylor, P., & Caley, R. (2014). The Festival Speech Synthesis System, 

System Documentation. Edition 2.4, for Festival Version 2.4.0. 

http://www.festvox.org/docs/manual-2.4.0/festival_toc.html (Access date: 

18/10/2017) 

[4] Breen, A., Eggleton, B., Dion, P., & Minnis, S. (2002). Refocussing on the Text 

Normalisation Process in Text-to-Speech Systems. In Seventh International 

Conference on Spoken Language Processing. 

[5] B. Merialdo. Tagging text with a probabilistic model In Proceedings of the IBM 

Natural Language ITL. Paris, France, 161–172, 1990. 

[6] Edgington, M. (1997). Investigating the limitations of concatenative synthesis. In 

Eurospeech. 

[7] F. Jelinek. Markov source modeling of text generation. In Impact of Processing 

Techniques on Communication, J. Skwirzinski, ed. M. Nijhoff, Dordrecht, 1985. 

[8] F. Mosteller & D. Wallace. Inference and Disputed Authorship: The Federalist. 

Addison-Wesley, Reading, MA, 1964. 

[9] K. W. Church. A stochastic parts program and noun phrase parser for 

unrestricted text. In Proceedings of the Second Conference on Applied Natural 

Language Processing, 136–143, 1988. 

[10] L.Brieman, J.Friedman, R.Olshen, & C.Stone. Classification and Regression 

Trees. Wadsworth & Brooks, Monterey, CA, 1984. 

[11] Martin, J. H., & Jurafsky, D. (2009). Speech and language processing. Second 

Edition. New Jersey: Pearson Education. 

[12] Merriam-Webster New Words & Slang. http://nws.merriam-

webster.com/opendictionary/newword_display_recent.php (Access date: 

21/10/2017) 



	

[13] P. Brown, S. Della Pietra, V. Della Pietra, & R. Mercer. Word sense disam- 

biguation using statistical methods. In Proceedings of the 29th Annual Meeting of the 

Association for Computational Linguistics, Berkeley, 264–270, 1991. 

[14] Sproat, R., Black, A. W., Chen, S., Kumar, S., Ostendorf, M., & Richards, C. 

(2001). Normalization of non-standard words. Computer speech & language, 15(3), 

287-333. 

[15] Taylor, P. (2009). Text-to-speech synthesis. Cambridge university press.  

[16] Yarowsky, D. (1997). Homograph disambiguation in text-to-speech synthesis. In 

Progress in speech synthesis (pp. 157-172). Springer New York.  



	

Part 2: Literature Review 
– TTS evaluation 

 

 

[1] evaluates TTS systems by asking human subjects to assess the intelligibility of 

synthesised sentences. The sentences are automatically-generated semantically-

unpredictable ones, constructed by five simple basic syntactic structures and 

lexicons of mini-syllabic frequent vocabulary. Compared with evaluation at other 

levels, the one in [1] seems more reliable and flexible cross-linguistically. 

 

In [2], to report the weakness of time-domain concatenative TTS systems which 

without explicit speech models, it designs three kinds of experiments that are beyond 

systems’ capabilities. Consequently, some problems of TTS systems are revealed 

due to the bad performance. And it suggests possible solutions accordingly. 

 

Both papers talk about evaluation methods of TTS systems with something in 

common. First, they both include human subjects’ participation in intelligibility 

assessment, emotion classification, or ambiguity judgement. So, the evaluation of 

TTS systems is directly dependent on subjects’ judgement. As TTS systems so far 

mainly service human beings, it is reasonable for both papers to have human 

feedback as measurement. Second, they both (partly in [2]) evaluate sentence-level 

performance of TTS systems. [1] claims sentence-level intelligibility of the first 

priority; [2] implements the emotional classification experiment with sentences which 

are long enough for subjects to perceive and judge. 

 

Meanwhile, they differ in some aspects. First, they have different objectives. [1] aims 

at constructing a robust and flexible test to various TTS systems; [2] tries to prove 

the importance of containing an explicit speech model. Second, the systems are 

evaluated by different aspects of language. In [1], subjects judge how intelligible the 

synthesised sentences are to them; subjects in [2] classify emotions of utterances, 

which should not require any understanding of the sentences’ actual meanings. 

 



	

Both papers are imperfect. As stated by itself, the five syntactic structures in [1] used 

to generate sentences has no scientific support. It is suspicious whether the number 

or variety of syntactic structures would affect the result or not. Another unclear point 

in [1] is the relation between the intelligibility results of synthetic and natural 

utterances(Table1). Readers might wonder what the close values in each test mean. 

In [2], as the content of sentence usually have an influence on emotion classification, 

I doubt the results of the emotional synthesis experiment might have been biased. It 

is better to select semantically-meaningless sentences as experiment objects. 

Besides, [2] fails to take other factors into consideration in the database experiment. 

The unnaturality in a0743s05 might be resulted from the failure of TDPSOLA in 

modifying duration correctly, as perceptually the natural utterances are smooth in 

general but short and abrupt. Also, unnaturality of single words does not necessarily 

lead to unnaturality in longer utterances. 

 

Relating back to Festival, when intentionally seeking mistakes it makes, we could 

consider more acoustically, e.g. looking at glottalisation as proposed by [2] to see 

whether Festival performs well in PostLex modification of glottalisation. Also, we can 

try synthesising semantically-anomalous sentences to analyse Festival’s 

performance in tasks such as POS tagging, waveform generation, etc., which should 

bring interesting outcomes.  
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